

Introduction

Legrand, a clear, comprehensive offer for all types of application

DX ${ }^{3}$, a complete solution

DX ${ }^{3}$

THE NEXT STEP

Easy, safe connection

$D X^{3}$, impeccable quality

Perfect control of your installation

Protection tailored
to your requirements

Choose your distribution

More comfort with energy saving

Catalogue pages

A company always known for its groundbreaking innovations, Legrand's extensive R\&D and technologically advanced products make us who we are today. As the global specialist in electrical and digital building infrastructures, our understanding of the market and its needs motivate us to innovate. Your recognition of our efforts, led us to the next step - DX^{3}.

Presenting, DX^{3}, an international range of protection devices. Its revolutionary design supports all kinds of installations thus giving a never before experience. With 10 patents, 13 new features and a wide range, DX^{3} is the next step.

\square legrand

LEGRAND, A CLEAR, COMPREHENSIVE OFFER FOR ALL TYPES OF APPLICATION

The new DX ${ }^{3}$ circuit breakers can be integrated with a wide range of products, providing exceptional technical performance levels

The variety of functions and range of characteristics offered will enable you to equip all your distribution boards. The very high levels of coordination between the various ranges of DX^{3} modular circuit breakers makes it suitable for all types of application.

PROTECTION / BREAKING

All functions on DIN rail

17 legrand

Each breaking capacity has its own power solution Perfect complementarity for your distribution boards up to 6300 A and 100 kA breaking capacity.

DPX ${ }^{3}$

$D M X^{3}$

Tl legrand

DX ${ }^{3}$

A COMPLETE SOLUTION

The efficient designs of the products are such that they can be easily installed.
The clear identification marks, to know the state of the circuit breaker, make it easier to maintain. The high quality products also assure the safety of the user, thus making it a complete solution.

EASY, SAFE CONNECTION

Safety is prioritised with the innovative features of the DX^{3} products

The quality and hold of the connections are vital for the safety of distribution boards fitted with high breaking capacity MCBs. The connection areas are designed to make installation faster without compromising on safety.

RISING CLAMP TERMINALS Ensure a high quality, durable connection

RELIABLE CONNECTIONS
Compensation for the effect of loosening
to ensure excellent hold over time
and consistent contact ($\mathrm{In} \geq 80 \mathrm{~A}$)

1.5

 modules/poleBlack handle: circuit breakers Grey handle: switches Breaking capacity 16 kA 25 kA 36 kA 50 kA

RETRACTABLE INSULATING SHIELDS

With the integrated retractable insulating
shields, no additional accessories are
needed to isolate the connections
on any breaking capacities and high ratings
of the 1.5 modules/pole ($\mathrm{In} \leq 63 \mathrm{~A}$) circuit breakers.

Legrand pays particular attention to how these devices perform: Each of them is set and checked individually on the production lines

The design integrated with the $D X^{3}$ range implicates its international quality. The products are crafted in a way to provide ease of installation.

41 legrand

PERFECT CONTROL
 OF YOUR INSTALLATION

The $D X^{3}$ range
has a selection of electrical auxiliaries for monitoring and controlling circuits remotely

Auxiliary contacts and fault signal contacts, shunt trips, undervoltage releases,
overvoltage releases and motorised controls.

THE AUXILIARIES FIT FIRMLY without the need for any tools and ensures that the entire assembly is robust

THE ACCESSIBILITY OF THE TERMINALS and the visibility of the screw heads make the installer's work easier

$D X^{3}$ motorised controls can be used with 1 module per pole devices (circuit breakers, RCBOs and RCCBs) just as easily as auxiliaries.

OPTIMISED SPACE IN THE DISTRIBUTION BOARD

Legrand motorised controls are the most compact
in the market: 1 module wide.
They save a great deal of space inside the
distribution board.

Llegrand

PROTECTION

TAILORED TO YOUR REQUIREMENTS

A compact solution for protection and measurement

The new $D X^{3}$ RCD add-on modules with metering have a wide range of features to meet the most stringent safety requirements. They come with RS485 communication port for remote data viewer.

CHOOSE YOUR DISTRIBUTION

Legrand optimised distribution has been designed for maximum safety, ease of installation and maintenance of distribution boards

Wiring and tedious tightening operations are minimised, and the risks of poor contact and short-circuits are reduced, while mounting time is optimised.

DISTRIBUTION BLOCK
SUPPLY VIA THE
POWER SUPPLY MODULE PROVIDED

OPTIMISED
DISTRIBUTION HX ${ }^{3} 125$ A horizontal distribution blocks with plug-in connection

Horizontal 4-pole distribution for XL^{3} 160 to 4000 enclosures:

- Optimised design:

Freedom to mix 1P, 1P+N, 2P, $3 P$ and 4P devices on the same row

- Optimised installation: Automatic connection with no wiring or clamping
- Safe connection and disconnection of devices, even when the distribution block is powered-up (due to the IP xxB insulation of the distribution block and the integral connection modules in the devices).

EASY CONNECTION

Circuit breakers with plug-in terminals are fixed onto the distribution block with no need for any tool. The phase to be connected is determined by the choice of the connector. The distribution block can be supplied via the power supply module provided or via the head of row device.

MORE COMFORT WITH ENERGY SAVINGS

The Legrand modular control and monitoring devices are a perfect addition to the range of DX^{3} protection devices

With its time switches \& contactors,
Legrand guarantees a unique experience
With the selection of functions available,
it is simple to improve the safety, efficiency and comfort of installations and meet energy requirements.

- Conform to IEC/EN 61095
- Space for power supply busbar on top (up to 25 A)
- Manuat override for test and repair functions, carried out via the handle
- Permanent "ON" or "OFF" without automatic reset

Battery replacement

- With synchronous (mains- synchronised clock precision) or quartz motor
- +/- $2.5 \mathrm{~s} /$ day clock precision (quartz motor)
- 100 hour running reserve (quartz motor)
- Surface-mounting possible with a wall bracket and a terminal cover (cat no: 412859)
- Unit width: 3 modules of 17.5 mm each

DISCOVER THE PRODUCTS

DX ${ }^{3}$
MCBs
(p. 20)

P. 25

DX3 - 36 kA MCB

P. 28 DX ${ }^{3}$ - RCBOs AC Applicaiton
$\because \quad P .2$
DX ${ }^{3}$ - RCBOs - 6 kA
AC Applicaiton upto 32 A

P. 31
$D X^{3}-R C D$
add-on module with measurement \& metering

P. 37

Low voltage SPDs
class II (T2)

EMDX³
multi-function mesauring units (p. 34)

4 legrand

DX ${ }^{3}$ MCBs

408590

408614

408637

408655

408677

408694
\square Technical characteristics p. 39-53
10 kA ISI marked as per IS/IEC 60898-1 2002
Integrated label holder
Sliding bottom clamp
Improved air channels
Color coded On/Off indication on dolly
Biconnect lower terminals
IP 20 protected terminals
Sliding shutters
DC-80 V per pole - 1 kA

Pack	Cat.Nos	DX ${ }^{3}$ MCBs - C curve		Pack	Cat.Nos	DX ${ }^{3}$ MCBs - C curve	
		Single pole 240/415 V Nominal rating $\ln (A)$	Number of modules			3 pole 415 V~ Nominal rating In (A)	Number of modules
1/10/120	408580 408581	0.5	1 1	1/32	408643 408644	0.5	3 3
1/10/120	408583	2	1	1/32	408646	2	3
1/10/120	408584	3	1	1/32	408647	3	3
1/10/120	408585	4	1	1/32	408648	4	3
1/10/120	408587	6	1	1/32	408650	6	3
1/10/120	408590	10	1	1/32	408653	10	3
1/10/120	408592	16	1	1/32	408655	16	3
1/10/120	408593	20	1	1/32	408656	20	3
1/10/120	408594	25	1	1/32	408657	25	3
1/10/120	408595	32	1	1/32	408658	32	3
1/10/120	408596	40	1	1/32	408659	40	3
1/10/120	408597	50	1	1/32	408660	50	3
1/10/120	408598	63	1	1/32	408661	63	3
1/5/60	408602	$\text { Single pole }+ \text { Neutral } 230$	2	1/32	408665	$3 \text { pole }+\underset{0.5}{\text { Neutral } 415 \mathrm{~V} \sim}$	4
1/5/60	408603	1	2	1/32	408666	1	4
1/5/60	408605	2	2	1/32	408668	2	4
1/5/60	408606	3	2	1/32	408669	3	4
1/5/60	408607	4	2	1/32	408670	4	4
1/5/60	408609	6	2	1/32	408672	6	4
1/5/60	408612	10	2	1/32	408675	10	4
1/5/60	408614	16	2	1/32	408677	16	4
1/5/60	408615	20	2	1/32	408678	20	4
1/5/60	408616	25	2	1/32	408679	25	4
1/5/60	408617	32	2	1/32	408680	32	4
1/5/60	408618	40	2	1/32	408681	40	4
1/5/60	408619	50	2	1/32	408682	50	4
1/5/60	408620	63	2	1/32	408683	63	4
		2 pole 415 V ~				4 pole 415 V ~	
1/40	408621	0.5	2	1/32	408684	0.5	4
1/40	408622	1	2	1/32	408685	1	4
1/40	408624	2	2	1/32	408687	2	4
1/40	408625	3	2	1/32	408688	3	4
1/40	408626	4	2	1/32	408689	4	4
1/40	408628	6	2	1/32	408691	6	4
1/40	408631	10	2	1/32	408694	10	4
1/40	408633	16	2	1/32	408696	16	4
1/40	408634	20	2	1/32	408697	20	4
1/40	408635	25	2	1/32	408698	25	4
1/40	408636	32	2	1/32	408699	32	4
1/40	408637	40	2	1/32	408700	40	4
1/40	408638	50	2	1/32	408701	50	4
1/40	408639	63	2	1/32	408702	63	4

408719

408746

408752

408790

10 kA ISI marked as per IS/IEC 60898-1 2002
Integrated label holder
Sliding bottom clamp
Improved air channels
Color coded On/Off indication on dolly
Biconnect lower terminals
IP 20 protected terminals
Sliding shutters
DC-80 V per pole - 1 kA

Pack	Cat.Nos	DX ${ }^{3}$ MCBs - D curve		Pack	Cat.Nos	DX ${ }^{3}$ MCBs - D curve	
1/10/120	408706	Single pole 240/415 V~ Nominal rating In (A)	Number of modules	1/32	408752	3 pole 415 V ~ Nominal rating $\ln (\mathrm{A})$	Number of modules
1/10/120	408707	1	1	1/32	408753	1	3
1/10/120	408709	2	1	1/32	408755	2	3
1/10/120	408710	3	1	1/32	408756	3	3
1/10/120	408711	4	1	1/32	408757	4	3
1/10/120	408712	6	1	1/32	408758	6	3
1/10/120	408714	10	1	1/32	408760	10	3
1/10/120	408716	16	1	1/32	408762	16	3
1/10/120	408717	20	1	1/32	408763	20	3
1/10/120	408718	25	1	1/32	408764	25	3
1/10/120	408719	32	1	1/32	408765	32	3
1/10/120	408720	40	1	1/32	408766	40	3
1/10/120	408721	50	1	1/32	408767	50	3
1/10/120	408722	63	1	1/32	408768	63	3
		Single pole + Neutral 230				$3 \text { pole + Neutral } 415 \mathrm{~V} \sim$	
$1 / 5 / 60$ $1 / 5 / 60$	408726 408727	$\begin{gathered} 0.5 \\ 1 \end{gathered}$	2	$1 / 32$ $1 / 32$	408772 408773	0.5	4
1/5/60	408729	2	2	1/32	408775	2	4
1/5/60	408730	3	2	1/32	408776	3	4
1/5/60	408731	4	2	1/32	408777	4	4
		2 pole 415 V ~				4 pole 415 V ~	
1/40	408732	0.5	2	1/32	408778	0.5	4
1/40	408733	1	2	1/32	408779	1	4
1/40	408735	2	2	1/32	408781	2	4
1/40	408736	3	2	1/32	408782	3	4
1/40	408737	4	2	1/32	408783	4	4
1/40	408738	6	2	1/32	408784	6	4
1/40	408740	10	2	1/32	408786	10	4
1/40	408742	16	2	1/32	408788	16	4
1/40	408743	20	2	1/32	408789	20	4
1/40	408744	25	2	1/32	408790	25	4
1/40	408745	32	2	1/32	408791	32	4
1/40	408746	40	2	1/32	408792	40	4
1/40	408747	50	2	1/32	408793	50	4
1/40	408748	63	2	1/32	408794	63	4

47 legrand

DX ${ }^{3}$ MCBs
MCBs for AC applications 80-125 A
DX ${ }^{3}$ MCBs
MCBs for DC applications 63 A

408812
6 kA as per IEC 60947-2
Integrated label holder
Sliding bottom clamp
Improved air channels
Color coded On/Off indication on dolly
Biconnect lower terminals
IP 20 protected terminals
Sliding shutters
DX ${ }^{3}$ MCBs 6 kA*
Single pole 250 V -

Nominal rating $\ln (A)$	Number of modules
0.5	1
1	1
2	1
3	1
4	1
6	1
10	1
16	1
20	1
25	1
32	1
40	1
50	1
63	1
$\mathbf{2}$ pole $\mathbf{5 0 0}$	
0.5	2
1	2
2	2
3	2
4	2
6	2
10	2
16	2
20	2
25	2
32	2
40	2

409225
\square Technical characteristics p. 39-53
Breaking capacity
16 kA - IEC 60947-2-400 V~
Can be equipped with $D X^{3}$ auxiliaries and accessories

Pack	Cat.Nos	DX ${ }^{3}$ MCBs 16 kA*		Pack	Cat.Nos	DX ${ }^{3}$ MCBs 16 kA*	
		Single pole 230/400 V ~ Nominal rating In (A)	Number of modules			3 pole 400 V~ Nominal rating $\ln (\mathrm{A})$	Number of modules
1	409129	6	1	1	409269	6	3
1	409131	10	1	1	409271	10	3
1	409132	13	1	1	409272	13	3
1	409133	16	1	1	409273	16	3
1	409134	20	1	1	409274	20	3
1	409135	25	1	1	409275	25	3
1	409136	32	1.5	1	409276	32	4.5
1	409137	40	1.5	1	409277	40	4.5
1	409138	50	1.5	1	409278	50	4.5
1	409139	63	1.5	1	409279	63	4.5
1	409140	80	1.5	1	409280	80	4.5
1	409141	100	1.5	1	409281	100	4.5
1	409142	125	1.5	1	409282	125	4.5
		2 pole 230/400 V				4 pole 400 V ~	
1	409217	6	2	1	409351	6	4
1	409219	10	2	1	409353	10	4
1	409220	13	2	1	409354	13	4
1	409221	16	2	1	409355	16	4
1	409222	20	2	1	409356	20	4
1	409223	25	2	1	409357	25	4
1	409224	32	2	1	409358	32	6
1	409225	40	3	1	409359	40	6
1	409226	50	3	1	409360	50	6
1	409227	63	3	1	409361	63	6
1	409228	80	3	1	409362	80	6
1	409229	100	3	1	409363	100	6
1	409230	125	3	1	409364	125	6
		*For industrial use only.				*For industrial use only.	

4 legrand

DX³ MCBs - 25 kA

\square Technical characteristics p. 39-53
Breaking capacity:
25 kA - IEC 60947-2-400 V~
Can be equipped with DX ${ }^{3}$ auxiliaries and accessories

Pack	Cat.Nos	DX ${ }^{3}$ MCBs - 25 kA*		Pack	Cat.Nos	DX ${ }^{3}$ MCBs - 25 kA* (continued)	
	C curve	Single pole 230/400 V Nominal rating In (A)	Number of modules		C curve	3 pole - 400 V ~ Nominal rating In (A)	Number of modules
1	409753	6	1	1	409779	6	3
1	409754	10	1	1	409780	10	3
1	409755	16	1	1	409781	16	3
1	409756	20	1	1	409782	20	3
1	409757	25	1	1	409783	25	3
1	409758	32	1.5	1	409784	32	4.5
1	409759	40	1.5	1	409785	40	4.5
1	409760	50	1.5	1	409786	50	4.5
1	409761	63	1.5	1	409787	63	4.5
1	409762	80	1.5	1	409788	80	4.5
1	409763	100	1.5	1	409789	100	4.5
1	409764	125	1.5	1	409790	125	4.5
		2 pole - $230 / 400 \mathrm{~V}$ ~				4 pole - $400 \mathrm{~V} \sim$	
1	409766	6	2	1	409792	6	4
1	409767	10	2	1	409793	10	4
1	409768	16	2	1	409794	16	4
1	409769	20	2	1	409795	20	4
1	409770	25	2	1	409796	25	4
1	409771	32	2	1	409797	32	6
1	409772	40	3	1	409798	40	6
1	409773	50	3	1	409799	50	6
1	409774	63	3	1	409800	63	6
1	409775	80	3	1	409801	80	6
1	409776	100	3	1	409802	100	6
1	409777	125	3	1	409803	125	6

DX ${ }^{3}$ MCBs - 36 kA
thermal magnetic MCBs from 10 A to 80 A

410012

DX ${ }^{3}$ MCBs - 50 kA
thermal magnetic MCBs from 10 A to 63 A

Technical characteristics p. 39-53
Breaking capacity:
50 kA - IEC 60947-2 - 400 V~
Can be equipped with $D X^{3}$ auxiliaries and accessories

Pack	Cat.Nos	DX ${ }^{3}$ MCBs - 50 kA*	
	D curve	Single pole 230/400 V	
1	410134	10	1.5
1	410135	16	1.5
1	410136	20	1.5
1	410137	25	1.5
1	410138	32	1.5
1	410139	40	1.5
1	410140	50	1.5
1	410141	63	1.5
		2 pole - 230/400 V	
1	410147	10	3
1	410148	16	3
1	410149	20	3
1	410150	25	3
1	410151	32	3
1	410152	40	3
1	410153	50	3
1	410154	63	3
		3 pole - $400 \mathrm{~V} \sim$	
1	410160	10	4.5
1	410161	16	4.5
1	410162	20	4.5
1	410163	25	4.5
1	410164	32	4.5
1	410165	40	4.5
1	410166	50	4.5
1	410167	63	4.5
		4 pole - 400 V ~	
1	410173	10	6
	410174	16	6
	410175	20	6
1	410176	25	6
1	410177	32	6
1	410178	40	6
1	410179	50	6
1	410180	63	6

*For industrial use only.

41 legrand

DX ${ }^{3}$ isolators
ISs for AC applications upto 125 A

406500

406510

406520

Technical characteristics p. 53
Isolators for AC applications upto 125 A
ISI marked as per IEC 60947-3
Integrated label holder
Ergonomic red color dolly
Sliding bottom clamp
Double break mechanism
Improved air channels
Color coded On/Off indication on dolly
Biconnect lower terminals
IP 20 protected terminals
Sliding shutters

Pack	Cat.Nos	Isolators	
		2 pole 415 V~ Nominal rating $\ln (\mathrm{A})$	Number of modules
1/5/60	406500	32	2
1/5/60	406501	40	2
1/5/60	406502	63	2
1/5/60	406504	100	2
1/5/60	406505	125	2
		3 pole 415 V ~	
1/40	406509	32	3
1/40	406510	40	3
1/40	406511	63	3
1/40	406513	100	3
1/40	406514	125	3
		4 pole 415 V	
1/32	406518	32	4
1/32	406519	40	4
1/32	406520	63	4
1/32	406522	100	4
1/32	406523	125	4

411851

411877

411893
©. Technical characteristics p. 54-59
ISI marked as per IS 12640-1
Integrated label holder
Ergonomic Grey color dolly
Sliding bottom clamp
Color coded On/Off indication on dolly
Biconnect lower terminals
IP 20 protected terminals
35 sq mm terminals
Sliding shutters

Pack	Cat.Nos	DX ${ }^{3}$ RCCBs	
		2 pole 240 V	
		30 mA Nominal rating In (A)	Number of modules
1/5/60	411851	25	2
1/5/60	411852	40	2
1/5/60	411853	63	2
		100 mA	
1/5/60	411856	25	2
1/5/60	411857	40	2
1/5/60	411858	63	2
		300 mA	
1/5/60	411861	25	2
1/5/60	411862	40	2
1/5/60	411863	63	2
		$\begin{aligned} & 4 \text { pole } 415 \mathrm{~V} \sim \\ & 30 \mathrm{~mA} \end{aligned}$	
1/32	411876	25	4
1/32	411877	40	4
1/32	411878	63	4
		100 mA	
1/32	411881	25	4
1/32	411882	40	4
1/32	411883	63	4
		300 mA	
1/32	411886	25	4
1/32	411887	40	4
1/32	411888	63	4
		4 pole 415 V , A-S	
		300 mA	
1/5/60	411891	25	4
1/5/60	411892	40	4
1/5/60	411893	63	4
		2 pole 240 V	
		30 mA	
1/5/60	411871	25	2
1/5/60	411872	40	2
1/5/60	411873	63	2
		4 pole 415 V , HPI	
		30 mA	
1/32	411896	25	4
1/32	411897	40	4
1/32	411898	63	4

4 legrand

DX ${ }^{3}$ RCCBs
DX ${ }^{3}$ RCBOs
RCCBs for AC applications 80-100 A

411508

411705

411715

Technical characteristics p. 54-59
Integrated label holder
Ergonomic Grey color dolly
Color coded On/Off indication on dolly
IP 20 protected terminals
35 sq mm terminals
Sliding shutters
B type \approx detect sinusoidal AC, pulsating DC and smooth DC residual currents

*For industrial use only.

\square Technical characteristics p. 54-59

ISI marked as per IS 12640-2
Integrated label holder
Ergonomic design
Color coded On/Off indication on dolly
Front face indication for earth leakage fault
IP 20 protected terminals
35 sq mm terminals
Sliding shutters

DX ${ }^{3}$ RCBOs
RCBOs compact for AC applications upto 32 A, 6 kA
N

411394

411188

411208

Technical characteristics p. 54-59

47 legrand

DX³ auxiliaries
Auxiliaries common for MCBs, Isolators, RCCBs \& RCBOs

406252

406278

406282

Technical characteristics p. 61
Easy \& fast fixation on site
On site clip on mounting
Clip on fitting on left side

Pack	Cat.Nos	Signalling auxiliaries	
1	406250	Auxiliary changeover switch 6 A	Number of modules 0.5
1	406252	Fault signalling changeover switch 6 A	0.5
1	406264	Changeover + fault signalling switch	1
		Control auxiliaries	
1	406276	Shunt release $12 / 48 \mathrm{~V}$ AC/DC	1
1	406278	Shunt release 110/415 V AC	1
1	406280	Undervoltage release 24/48 V AC/DC	1
1	406282	Undervoltage release 230 V AC	1
1	406286	Pop over voltage release	1
1	406290	Motor control 24/48 V AC/DC	1
1	406291	Motor control 230 V AC	1
1	406293	Motor control auto reset 24/48 V AC/DC	2
1	406295	Motor control auto reset 230 V AC	2
1	406288	Automatic resetter	2
1	406289	Automatic resetter with autotest	2
		Rotary handle	
10	406319	Black rotary handle	-
10	406320	Yellow/red rotary handle	-
10	406303	Support for padlock Support for padlock till 63 A	-
		Sealable screw cover	
10	406304	Devices upto 63 A	-
10	406306	For 80-125 A devices	-
10	406307	1/2 module spacing unit 1/2 module spacing unit	0.5
10	406313	5 mm padlock 1/2 module spacing unit	-

Control auxiliaries

406278

$2 / 48 \mathrm{~V}$ AC/DC
Shunt release
Undervoltage release
24/48 V Actoc
406282 Undervoltage release
230 V AC
406290 Motor control
24/48 V AC/DC
Motor contro
406293 Motor control auto reset
24/48 V AC/DC
406288 Automatic resetter
Automatic resetter
with autotest

Rotary handle

406319 Black rotary
handle
rotary hand

Support for padlock

Sealable screw cover
06304 Devices upto 63 A
406306 For 80-125 A devices
$1 / 2$ module spacing unit
spacin
5 mm padlock
spacing unit

Compact design
Manual switching operation
Easy to assemble
Ergonomic design

Pack	Cat.Nos	For 1 mod/pole MCBs and ISs	
5	406314	Manual change-over Switch for DP	
5	406315Manual change-over switch for TP	2	
5	406316	Manual change-over switch for FP	3

3
——

Technical characteristics p. 59
Conform to IEC 60947-2
Hpi type: detect faults with AC and DC components, increased
Immunity to false tripping
Inbuilt measurement/metering option
Measurement - V, A, F, PF, KWh, KVA, KVAr, THD
Metering - V, A, F, KWh
RS 485 port for remote reading
Di-electric test button inbuilt
Ergonomic test button
Scroll button for easy readings
RLCD display on front facia
For mounting on the right-hand side of 1.5 module per pole DX ${ }^{3}$ MCBs Easy \& fast association mechanism
70 sq mm terminals

Daily and weekly time switch
Quick and easy programming due to the option to
select day blocks, day blocks can be individually set
or selected from the blocks Mon-Sun, Mon-Fri or Sat-Sun
Programming with precision to the second
Switch times visible in weekly overview on display

Pack	Cat.Nos	Alpharex ${ }^{3}$ digital time switches
1	412631	AlphaRex ${ }^{3}$ D21, 1 channel
1	412641	AlphaRex ${ }^{3}$ D22,
1	412634	AlphaRex ${ }^{3}$ D21s, 1 channel, with control input
1 1	412654 412657	Alpharex ${ }^{3}$ digital time switches - Astro - For switching on/off lights and other electric devices according to the rising/setting of the sun - With combination function for creating switching programs in which the devices are switched according to astronomical time and/or fixed preset times - Daily astronomical calculation of the sunrise/ sunset times based on the entered location or location coordinates AlphaRex ${ }^{3}$ D21 astro, 1 channel AlphaRex ${ }^{3}$ D22 astro, 2 channels
1 1	412629 412630	Alpharex ${ }^{3}$ yearly time switch - Yearly and weekly time switch with additional astronomical function for all channels - 84 switching programs per channel, comprising: - 28 weekly programs - 28 yearly programs - 28 special programs (priority program) AlphaRex ${ }^{3}$ DY21, 1 channel AlphaRex ${ }^{3}$ DY22, 2 channels
$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 412872 \\ & 412873 \end{aligned}$	Programming accessories Data key PC adapter for USB port

4 legrand

412812

412814

Technical characteristics p. 62-66
With synchronous (mains-synchronised clock precision) or quartz motor

- +/-2.5 s/day clock precision (quartz motor)
- Surface-mounting possible with a wall bracket and a terminal cover (Cat.No 4128 59)
- Unit width: 3 modules of 17.5 mm each

Pack

Cat.Nos

Twilight switches

- Including light sensor
- Wire for light sensor: $2 \times 1.5 \mathrm{~mm}^{2}$, maximum wire length: 50 m
- LED switching status indicator

Luxo switch

MicroRex analog time switches
In accordance with IEC 60730-1 and 60730-2-7
Manual switching ON/automatic/OFF
daily/weekly switching dial with captive
segments
Clock precision: +/- 5 min for the daily time switch $-10{ }^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ operating temperature
128 Daily time switch
412813 MicroRex QT31 -
Daily time switch
MicroRex W31 -
Weekly time switch
412790 MicroRex QT11 -
Daily time switch
412794 MicroRex QW11 -
Weekly time switch
Accessory
1
412859 Wall bracket

412544
@] Technical characteristics p. 67
Conform to IEC/EN 61095
Space for power supply busbar on top (up to 63 A)

Pack	Cat.Nos	Power contactors CX^{3}
1	412544	25 A 2 NO contactor
1	412545	40 A 2 NO contactor
1	412547	63 A 2 NO contactor
1	412548	63 A 2 NC contactor
1	412549	40 A 3 NO contactor
1	412550	63 A 3 NO contactor
1	412551	25 A 4 NO contactor
1	412553	40 A 4 NO contactor
1	412556	63 A 4 NO contactor
1	412557	63 A 4 NC contactor
		Signalling auxiliaries for contactors
		Auxiliary changeover switch
1	412429	For 1 module contactors
1	412430	For 2 module contactors
		25 A
1	412431	For 40 and 63 A
		contactors

\bigcirc
Technical charcateristics p. 67

Changeover switches
Conform to IEC 60669-1
Nominal rating 32 A
Compatible with fluorescent lamps (20 AX)
Two-way-250 V ~
Connection
$\$ 1$

Double two -way - 400 V

Two way with centre point - 250 V

Double two way with centre point - 250 V L.-. L.-.

Switch NO + NC - 250 V
412904

412908 412909 412916 412910 412911

Push-buttons and control switches
Conform to IEC 60669-1
Nominal rating $20 \mathrm{~A}-250 \mathrm{~V}$ ~
Compatible with florescent lamps (20 AX)
Accept prong-type supply busbars
Single function push-buttons

1 NO
$\begin{aligned} & \text { (green push-button) } \\ & +1 \mathrm{NC} \\ & \text { (red push-button) } \\ & \text { Single function control switches } \\ & 2 \mathrm{NO} \\ & 1 \mathrm{NO}+\mathrm{NC}\end{aligned}$
Number
of modules of module

2

Dual functions push-buttons without indicator
1 NO
1 NC
$\left\lvert\, \begin{aligned} & 1 \\ & \\ & 1\end{aligned}\right.$

1

LED indicators
Equipped with non replaceable LED lamps LED life: 100000 h
LED consumption: 0.17 W under 230 V /
0.11 W under 24 V ~

Conform to IEC 60947-5-1
Accept prong-type supply busbars
Single - 12/48 V~/ =-
Green
Red
Yellow
Blue
White

Single - 110/400 V~

- Gree
- Yellow
- Blue

Double - 110/400 V~

- Green/Red

Triple -230/400 V~

TX ${ }^{3}$ LED indicators - 250 V
Equipped with non replaceable LED lamps
Single
604077
604078
604079
$1 \mathrm{NO}+$ green
LED indicator
12/48 V / / =
$1 \mathrm{NC}+$ red
LED indicator
12/48 V~/ =
1 NO + green LED indicator 110/400 V~

1 NC + red
LED indicator $110 / 400 \mathrm{~V} \mathrm{\sim} \quad$ -

$\begin{gathered}\text { Number of } \\ \text { modules } \\ 1\end{gathered}$
1
1
1
\qquad

[^0]

Push-buttons and control switches (continued)
Dual functions control switches with indicator

Pack	Cat. Nos	Push-buttons and control switches (continued)
Dual functions control switches with indicator		

47 legrand

EMDX³ electrical energy meters

004674

Technical characteristics p. 68-69
Measure the electricity consumed by a single-phase or three-phase circuit downstream of the electricity distribution metering
Display electricity consumption in kWh, as well as other values such as current, active energy, reactive energy and power (depending on the catalogue number)
Conform to standards IEC 62053-21/23, IEC 62052-11 and IEC 61010-1
MID compliance ensures accuracy of the metering with a view to recharging for the electricity used

Pack	Cat.Nos	Single-phase meters Direct connection
1	004677	63 A - 2 modules RS 485 output
		Three-phase meters Direct connection
1	004680	63 A - 4 modules RS 485 output Connection with CT
1	0046845 A -4 modules RS 485 and pulse output	

EMDX ${ }^{3}$ multi-function measuring units
〔 rail mounting

004676

- Technical characteristics p. 68-69

Conform to standards:

- IEC 61557-12
- IEC 62053-22 class 0.5 S
- IEC 62053-23 class 2

Pack

Cat.Nos
EMDX ${ }^{3}$ modular
For mounting on - rail
Width: 4 modules

- LCD display
- Measurement of currents, voltages, active, reactive
and apparent power and internal temperature
- Dual tariff metering:
- Active energy consumed
- Reactive energy consumed
- Operating time
- Power factor
- THD voltages and currents up to order 51
- Programmable alarms on all functions
- Outputs for controlling wiring devices, alarm feedback and pulse feedback

EMDX ${ }^{3}$ RS 485 unit

004676
Data transmission via RS 485 communication interface and pulses

EMDX ${ }^{3}$

communication and supervision

026178

0261 88/89
©] Technical characteristics p. 68-69

Pack	Cat.Nos	Communication and supervision
1	026178	Web servers For 32 metering points (meters or multi-function measuring units)
1	026179Web servers For an unlimited number of metering points (meters or multi-function measuring units)	
1	026188Legrand Software For 32 metering points (supplied on CD)	
1	026189Legrand Software For an unlimited number of metering points (supplied on CD)	
1	004689	RS485/IP Convertor 230 V AC

EMDX ${ }^{3}$

measurement and control of electric equipment

026137
○. Technical characteristics p. 68-69

Pack	Cat.Nos	Measurement and control of electric
$1 / 2$	026135	equipment
$1 / 3$	026137	Central position
$1 / 2$	026136	Interfacesessor interface
$1 / 4$	026145	Kit configurator
$1 / 20$	046623	Stabilized power and control

Lllegrand

Class I (T1) low voltage SPDs

Technical characteristics p. 70-72

Protection against transient overvoltagess for 230/400 V ~ power networks ($50 / 60 \mathrm{~Hz}$). SPDs compliant with EN/IEC 61643-11 standards Recommended for main distribution boards
Class I+II (T1+T2) : SPDs tested and specified according to both T1 and T2 test classes

Class II (T2) low voltage SPDs

\square Technical characteristics p. 70-72
Protection against transient overvoltagess for 230/400 V ~ power networks ($50 / 60 \mathrm{~Hz}$). SPDs compliant with EN/IEC 61643-11 standards Recommended for distribution boards

Pack	Cat.Nos	T2 SPDs			
		SPDs with plug-in modules and status indicators: - Green: SPD operational - Orange: plug-in modules to be replaced			
		T2 - Imax 40 kA/pole SPDs recommended for power installations Up: 1.7 kV - In: $20 \mathrm{kA} /$ pole - Uc: 320 V Earthing systems : TT, TNC, TNS Recommended MCB: DX ${ }^{3} 25$ A - C curve			
		Number of poles	Neutral position	Remote status monitoring (FS contact)	Number of modules
1	412240	1 P	-	No	1
1	$412246{ }^{1}$	$1 \mathrm{P}+\mathrm{N}$	Right	No	2
1	412241	2 P	-	No	2
1	412242	3 P	-	Yes	3
1	412247^{1}	$3 \mathrm{P}+\mathrm{N}$	Right	No	4
1	412243	4 P		No	4
		T2 - Imax 40 kA/pole - 440 V~ (IT) SPDs recommended for big installations Up: 2.1 kV - In: $20 \mathrm{kA} /$ pole - Uc: 440 V ~ Earthing systems: TT, TNC, TNS, IT Recommended MCB: DX ${ }^{3} 25$ A - C curve			
1	412230	1 P	-	No	1
1	412232	3 P	-	Yes	3
1	412233	4P	-	Yes	4
		T2 - Imax 20 kA/pole SPDs recommended for small installations Up: 1.2 kV - In: $5 \mathrm{kA} /$ pole - Uc: $320 \mathrm{~V} \sim$ Earthing systems : TT, TNC, TNS Recommended MCB: DX 20 A - C curve			
1	412220	1 P	-	No	1
1	412226^{1}	$1 \mathrm{P}+\mathrm{N}$	Right	No	2
1	412221	2 P		No	2
1	412227^{1}	$3 \mathrm{P}+\mathrm{N}$	Right	No	4
1	412223	4P		No	4
		Replacement plug-in modules			
1	412299	For SPDs T2 - 40 kA Cat.Nos 4122 40/41/42/43/44/45/46/47/66/67			
1	412300	N-PE module for SPDs T2-40 kA Cat.Nos 4122 46/47			
1	412301	For SPDs T2-440 V Cat.Nos 4122 30/32/33			
1	412297	For SPDs T2-20kA Cat.Nos 4122 20/21/23/26/27/62/63			
1	412398	N-PE module for SPDs T2-20 kA Cat.Nos 4122 24/25/26/27			

Lllegrand

Class II (T2) low voltage SPDs with integrated protection

003951

003953

003954

SPDs for telephone lines

Technical characteristics p. 70-72

SPDs with integrated protection against overload currents and short-circuit currents SPDs compliant with EN/IEC 61643-11 standards For 230/400 V ~ power networks ($50 / 60 \mathrm{~Hz}$)

Pack	Cat.Nos
1	003951^{11}
1	$003953{ }^{1}$

Protection for consumer units

For residential and small commercial installations With plug-in modules and status indicators:

- Green: SPD operational
- Red: plug-in module need to be replaced

T2 self protected SPDs - Imax 12 kA/pole

For installations with low risk level (in urban areas, underground power supplies, etc.)
In: $10 \mathrm{kA} /$ pole - Uc: $275 \mathrm{~V} \sim$
Earthing systems: TT, TNS
Cat.No 0039 51: SPDs with Y connection (both incoming and outgoing terminals ar the top of the SPDs) providing better protection against overvoltages

| Number
 of poles | Neutral
 $1 P+N$ | Integrated
 position
 Left | protection |
| :---: | :---: | :---: | :---: | | Number of |
| :---: |
| modules |

Protection for secondary distribution boards

Protection of sensitive equipment
With plug-in modules and status indicators:

- Green: SPD operational
- Red: plug-in module need to be replaced
In: $10 \mathrm{kA} /$ pole - Uc: 275 V
Earthing systems: TT, TNS.
Cat.No 0039 71: both incoming and outgoing terminals ar the top of the SPDs, providing better protection against overvoltages
T2 self protected SPDs - Imax $12 \mathrm{kA} /$ pole

Number of poles $1 P+N$	Neutral position Left	Integrated	protection
$3 P+N$	Lsc $\leq 10 \mathrm{kA}$	modules	
Left	Isc $\leq 10 \mathrm{kA}$	2	
	Lef		

Replacement plug-in modules

For self protected SPDs

003954
Cat.Nos 0039 51/53
Cat.Nos 0039 71/73
For old SPDs
003928 Cat.Nos 0039 20/21/22/23
003934 Cat.Nos 0039 30/31/32/33
003939 Cat.Nos 0039 35/36/38
003944

Pack

SPDs for telephone and data lines
Overvoltage protection of equipment such as telephones, modems, video door entry phones, RS485 networks, measurement loops, etc. Not compatible with VDSLs
SPDs needed to provide complete protection of the installation when low voltage SPDs are present TS/IEC 61643-12).
SPDs with status indicators:

- Green: SPD operational
- Orange: plug-in module need to be replaced Compliant with EN/IEC 61643-21 standards
"Analogue" SPD (STN, non-unbundled
ADSL, etc.)

"Digital" SPD (unbundled ADSL, SDSL, ISDN, etc.)

$5 / 10 \mathrm{kA}$	48 V	100 V	1

1: $1 \mathrm{P}+\mathrm{N}$ and $3 \mathrm{P}+\mathrm{N}$: L-N and N-PE protection modes (common and differential modes), the N pole being protected by encapsulated spark gaps. Also called sometimes $1+1$ and $3+1$

DX ${ }^{3}$
MCBs

Technical data

Specifications	IS/IEC 60898-1 2002
Number of poles	SP, SPN, DP, TP, TPN, FP
Characteristics	C \& D Curve
Breaking capacity	10 kA 0.5 A to 63 A as per IS/IEC 60898-1 2002 16 kA for 0.5 A to 25 A as per IEC 60947-2
Rated voltage	$230 \mathrm{~V} / 400 \mathrm{~V}$
Current limitation class	Class 3
Frequency	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
Minimum operating voltage	$12 \mathrm{~V} \mathrm{AC/DC}$
Enclosures	Polyester self extinguishing, heat and fire resistant according to IEC 60898-1, glow-wire test at $960^{\circ} \mathrm{C}$ for external parts made of insulating material necessary to retain in position currentcarrying parts and parts of protective circuit $\left(650^{\circ} \mathrm{C}\right.$ for all other external parts made of insulating material)
Mounting position	Vertical / Horizontal / Upside down / On the side
Fixing	On symmetric rail EN/IEC 60715 or DIN 35
Maximum cable size	Top/Bottom $1 \times 1.5 \mathrm{~mm}^{2}$ to $35 \mathrm{~mm}^{2}$ Rigid cable $2 \times 1.5 \mathrm{~mm}^{2}$ to $16 \mathrm{~mm}^{2}$
	Top/Bottom $1 \times 1.5 \mathrm{~mm}^{2}$ to $25 \mathrm{~mm}^{2}$ Flexible cable $2 \times 1.5 \mathrm{~mm}^{2}$ to $10 \mathrm{~mm}^{2}$
Applied connection torque	Recommended: 2.5 Nm Minimum : 2 Nm Maximum: 3 Nm
Mechanical endurance	20000 operations without load
Electrical endurance	10000 operations with load (under $\operatorname{In}^{*} \cos \varphi=0.9$) 2000 operations under In, DC current
Permissible ambient temperature	0.5 to 63 A - Maximum $+70^{\circ} \mathrm{C}$ Minimum $-25^{\circ} \mathrm{C}$
Specifications	IEC 60947-2
Number of poles	SP, DP, TP, FP
Breaking capacity	10 kA 80 A to 125 A as per IEC 60898 16 kA for 80 A to 125 A as per IEC 60947-2
Rated voltage	$230 \mathrm{~V} / 400 \mathrm{~V}$
Current limitation class	Class 3
Frequency	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
Minimum operating voltage	12 V AC/DC
Enclosures	Polyester self extinguishing, heat and fire resistant according to IEC 60898-1, glow-wire test at $960^{\circ} \mathrm{C}$ for external parts made of insulating material necessary to retain in position currentcarrying parts and parts of protective circuit $\left(650^{\circ} \mathrm{C}\right.$ for all other external parts made of insulating material)
Mounting position	Vertical / Horizontal / Upside down / On the side
Fixing	On symmetric rail EN/IEC 60715 or DIN 35
Maximum cable size	Top/Bottom $1 \times 1.5 \mathrm{~mm}^{2}$ to $50 \mathrm{~mm}^{2}$ Rigid cable $2 \times 1.5 \mathrm{~mm}^{2}$ to $25 \mathrm{~mm}^{2}$
	Top/Bottom $1 \times 1.5 \mathrm{~mm}^{2}$ to $35 \mathrm{~mm}^{2}$ Flexible cable $2 \times 1.5 \mathrm{~mm}^{2}$ to $20 \mathrm{~mm}^{2}$
Applied connection torque	Recommended : 2.5 Nm Minimum : 2 Nm Maximum: 3 Nm
Mechanical endurance	20000 operations without load
Electrical endurance	10000 operations with load (under $\operatorname{In}^{*} \cos \varphi=0.9$) 2000 operations under In, DC current
Permissible ambient temperature	80 to 125 A - Maximum $+70^{\circ} \mathrm{C}$ Minimum $-25^{\circ} \mathrm{C}$

Power dissipated in Watt per pole at In

Circuit breakers C and D curves

$\ln (\mathrm{A})$	0,5	1	1,6	2	3	4	5	6	7,5	10	16	20	25	32	40	50	63
$\mathbf{1 P} \div 4 \mathrm{P}$	$\mathbf{1 . 7}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2 . 1}$	$\mathbf{1 . 1}$	$\mathbf{1 . 4}$	$\mathbf{1 . 8}$	$\mathbf{2}$	$\mathbf{2 . 2}$	$\mathbf{2 . 7}$	$\mathbf{3 . 2}$	$\mathbf{4}$	$\mathbf{4 . 5}$	$\mathbf{5 . 5}$

$\begin{array}{l}\text { Permitted limit as per } \\ \text { IEC } 60898\end{array}$	3	3	3	3	3	3	3	3	3.5	4.5	4.5	6	7.5	9	13

Impedance per pole $(\Omega)=\mathrm{P}$ dissipated
I^{2}

	Ambient Temperature / In									
$\mathbf{I n}(\mathbf{A})$	$-25^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$40{ }^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
$\mathbf{0 , 5}$	0.62	0.6	0.57	0.55	0.52	0.5	0.47	0.42	0.40	0.38
$\mathbf{1}$	1.5	1.4	1.3	1.2	1.1	1	0.9	0.8	0.7	0.6
$\mathbf{2}$	2.8	2.6	2.5	2.3	2.2	2	2	1.9	1.8	1.7
$\mathbf{3}$	3.8	3.6	3.5	3.3	3.2	3.0	2.9	2.8	2.7	2.6
$\mathbf{4}$	4.5	4.2	4.0	3.9	3.7	3.5	3.4	3.3	3.2	3.1
$\mathbf{5}$	6.4	6.0	5.8	5.5	5.3	5.0	4.8	4.7	4.5	4.6
$\mathbf{6}$	7.5	7.0	6.6	6.4	6.2	6.0	5.8	5.6	5.4	5.3
$\mathbf{1 0}$	12.5	11.5	11.1	10.7	10.3	10.0	9.7	9.3	9.0	8.7
$\mathbf{1 6}$	20.0	18.7	18.0	17.3	16.6	16.0	15.4	14.7	14.1	13.5
$\mathbf{2 0}$	25.0	23.2	22.4	21.6	20.8	20.0	19.2	18.4	17.6	16.8
$\mathbf{2 5}$	31.5	29.5	28.3	27.2	26.0	25.0	24.0	22.7	21.7	20.7
$\mathbf{3 2}$	41.0	37.8	36.5	34.9	33.3	32.0	30.7	29.1	27.8	26.5
$\mathbf{4 0}$	51.0	48.0	46.0	44.0	42.0	40.0	38.0	36.0	34.0	32.0
$\mathbf{5 0}$	64.0	60.0	57.5	55.0	52.5	50.0	47.5	45.0	42.5	40.0
$\mathbf{6 3}$	80.6	75.6	72.5	69.9	66.1	63.0	59.8	56.1	52.9	49.7

Choice of DX ${ }^{3}$ MCBs for capacitor banks

This table shows the rated current of MCBs to be used when controlling capacitor banks so as to guarantee its function and shortcircuit protection.
Overload protection is not necessary since these installations cannot be overloaded.
This data refers to shortcircuit protection in absence of harmonics or heavy transitory currents.

Power of capacitor bank in kVAr	DX ${ }^{3}$ MCB rating in amps			
	C characteristic		D characteristic	
	$\begin{gathered} \text { Single phase } \\ 240 \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Three phase } \\ 415 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Single phase } \\ & 240 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { Three phase } \\ & 415 \mathrm{~V} \end{aligned}$
0.5	10	6	3	1
1	20	6	6	2
1.5	32	10	10	3
2.5	40	16	10	4
3	50	16	16	4
3.5	63	20	16	6
4	63	25	16	6
4.5		25	20	10
5		32	20	10
5.5		32	25	10
6		32	25	10
6.5	...	40	25	10
7	\ldots	40	32	10
7.5		50	32	16
8	..	50	32	16
8.5	...	50	40	16
9	..	50	40	16
9.5		63	40	16
10		63	40	16
10.5	80	63	60	16
11	80		50	16
11.5	80		50	16
12	80		50	20
12.5	80		50	20
13	100	\ldots	63	20
13.5	100	\ldots	63	20
14	100	...	63	20
14.5	100	\ldots	63	25
15	100	\ldots	63	25
15.5	100	...		25
16	100	\ldots		25
16.5	125	\ldots	...	25
17	125	25
17.5	125		..	25
18	125	...	\ldots	32
18.5	125			32
19	125	\ldots	\ldots	32
19.5	125	...	\ldots	32
20	125			32
20.5	...	\ldots	...	32
21	32
21.5	32
22	\ldots	\ldots	\ldots	32
22.5	\ldots	\ldots	...	32
23	\ldots	32
23.5	\ldots	\ldots	\ldots	40
24		40
24.5	\ldots	\ldots	\ldots	40
25	\ldots	\ldots	\ldots	40
25.5		..	\ldots	40
26	\ldots	40
26.5	\ldots	40
27				40
27.5	\ldots	\ldots	...	40
28	\ldots	...	\ldots	40
28.5			,	40
29	\ldots	\ldots	\ldots	50
29.5	...	\ldots	\ldots	50
30	\ldots		.	50
30.5	...	80	\ldots	50
31	\ldots	80	...	50
31.5	-	80	\ldots	50
32	,	80	\ldots	50
32.5	...	80	...	50
33	...	80	...	50
33.5	\ldots	80	\ldots	50
34	硣	80	,	50
34.5	\ldots	80	\ldots	50
35	...	80	...	50
35.5	.	80	...	50
36	...	80	\ldots	50
36.5	\ldots	80	...	63
37	\ldots	80	..	63
37.5	...	80	...	63
38	...	80	\ldots	63
38.5	\ldots	80	\ldots	63
39	...	100	\ldots	63
39.5	\ldots	100	...	63
40	...	100	...	63
40.5	\ldots	100	\ldots	63
41		100	..	63
41.5	...	100	...	63
42	...	100	\ldots	63
42.5		100	\ldots	63
43	...	100	...	63
43.5	\ldots	100	...	63
44		100	\ldots	63
44.5	...	100	...	63
45	...	100	\ldots	63
45.5 to 48		100	.	
48.5 to 60		125	\cdots	\cdots

L7 legrand

DX ${ }^{3}$
RDSO

- Technical data

Specification	SPEC/E-12/1/14
Number of poles	1
Characteristic	As applicable
Line terminal	Indicated by LN
Load terminal	Indicated by LD
Rated Voltage	$130 \mathrm{~V}=\mathrm{=}$
Max. Operating Voltage	$440 \mathrm{~V}=-$
Min. Operating Voltage	$12 \mathrm{~V}=-$
Voltage resistance	$>2500 \mathrm{~V}$
Enclosure	Moulded out of DMC (thermoset plastic) bone grey colour, flamability class V1-UL94, Tracking index - 600+volts
Dolly	Black, can be locked or lead sealed in ON or OFF position
Fire retardent grade of enclosure	V
Mounting position	Optional
Fixing	Snap fixing on standard DIN RAIL profile EN 50023-35 x 7.5
Terminals	With flat Cu terminal extension mounting as per skel 3700. Current Carring Capacity 100 Amp. Max. Continuous.
On-Off indication	MCB in on position when marking I-ON appears on dolly. MCB in OFF position when making O-Off appears on dolly.
Mech. Service Life	10000 operation
Electrical Endurance	6000 operation at rated load
Climate resistance	25/95-40/93 ('C/RH)
Permissible Ambient :	T max. $-45^{\circ} \mathrm{C}$, $\mathrm{T} \min -25^{\circ} \mathrm{C}$ temperature
Shock resistance	20 g minimum 20 impacts duration of shock 13 ms .
Vibration resistance	3 g

As per international STD, MCB in 'ON' condition when dolly is in upper position.

DX ${ }^{3}$
MCBs

Technical data

Correct polarity connections for DC MCBs

- Supply terminals

When supply is given at lower terminals

Single pole MCB

Double pole MCB

- Supply terminals

When supply is given at upper terminals

Single pole MCB
Double pole MCB

Derating of MCB for use with fluorescent lights

Ferromagnetic and electronic ballasts have a high inrush current for a short time. These currents can cause the tripping of circuit breakers. At the time of the installation, it should take into account the maximum number of ballasts per circuit breaker that the manufacturers of lamps and ballasts indicate in their catalogues.

Influence of the altitude

	$\leq \mathbf{2 0 0 0} \mathbf{~ m}$	$\mathbf{3 0 0 0} \mathbf{~ m}$	$\mathbf{4 0 0 0} \mathbf{~ m}$	$\mathbf{5 0 0 0} \mathbf{~ m}$
Dielectric holding	3000 V	2500 V	2000 V	1500 V
Max operational voltage	400 V	400 V	400 V	400 V
Derating at $\mathbf{3 0 ^ { \circ } \mathbf { C }}$	none	none	none	none

Derating of MCBs function of the number of devices side by side:

When several MCBs are juxtaposed and operate simultaneously, the thermal evacuation of the poles is limited. This results in an increase in operating temperature of the circuit breakers which can cause unwanted tripping. It is recommended to apply the following coefficients to the rated currents.

Influence of the altitude

Number of circuit breakers side by side
$2-3$
$4-5$
$6-9$
10

Tripping characteristics

Standards has established different tripping characteristics depending on minimum and maximum values of magnetic trip.

DX ${ }^{3}$ MCB	Type	Im1	Im2	Typical application
$\mathbf{0 . 5}$ A to 63 A	D	10 In	20 In	Protection of cable and appliance which has very high starting currents.
6 A to 63 A	C	5 In	10 In	Protection of cable used for lighting load, power load and induction loads with high starting current.

Im1 - hold limit
Im2 - Trip limit
DX ${ }^{3}$ MCBs versus zero point extinguishing MCBs

Current limiting $\mathrm{DX}^{3} \mathrm{MCB}$

Zero point extinguishing MCB

17 legrand

DX ${ }^{3}$
MCBs

Technical data

Association of protection devices

Association is the technique by which the breaking capacity of a MCB is increased by coordinating it with another protection device, placed upstream. This coordination makes it possible to use a protection device with a breaking capacity which is lower than the maximum prospective short-circuit current at its installation point
The breaking capacity of a protection device must be at least equal to the maximum short-circuit which may occur at the point at which this device is installed
In exceptional cases, the breaking capacity may be lower than the maximum prospective short-circuit, as long as:

- It is associated with a device upstream which has the necessary breaking capacity at its own installation point
- The downstream device and the trunking being protected can withstand the power limited by the association of the devices.
Association therefore leads to substantial savings.
The association values given in the tables on the following pages are based on laboratory tests carried out in accordance with IEC 60947-2.

Note: In the case of single phase circuits (protected by $\mathrm{P}+\mathrm{N}$ or 2 P MCBs) in a 415 V AC supply, supplied upstream by a 3-phase circuit, it is advisable to use the association tables for 230 V .

Example of association

3-level association

An association may be created on three levels if one of the conditions below is met.

- The upstream device A must have an adequate breaking capacity at its installation point. Devices B and C are associated with device A. Simply check that the association values $B+A$ and $C+A$ have the necessary breaking capacity.
In this case, there is no need to check the association between devices B and C .
- The association is made between successive devices: Upstream device A, which has an adequate breaking capacity at its installation point, device C is associated with device B which is in turn associated with
 device A.
Simply check that the association values C+B and $B+A$ have the necessary breaking capacity. In this case, there is no need to check the association between devices A and C.

Association in IT connection systems

The values given in the tables should only be used for TN and TT systems.
Although this practice is not widely used, these values may also be used for installations with IT systems. It is therefore advisable to check that each protection device, on its own, can break, on a single pole, the maximum double fault current at the point in question.

Association between distribution boards

Association applies to devices installed in the same distribution board as well as in different boards. It is therefore generally possible to benefit from the advantages of the association between devices located, for example, in a main distribution board and in a secondary ooard.

MCB - switch association

The switches must be systematically protected by an MCB placed upstream. There is considered to be protection against overloads if the rating of switch I is at least equal to that of the upstream MCB, D. If this is not the case, the thermal stresses (devices and conductors) must be checked. The tables on the following pages give the breaking capacity limits of the MCB - switch associations.

Discrimination of protection devices

Discrimination is a technique which consists of coordinating the protection in such a way that a fault on one circuit only trips the protection placed at the head of that circuit, thus avoiding rendering the remainder of the installation inoperative. Discrimination improves continuity of service and safety of the installation
Discrimination rules are set by the regulations concerning public buildings and for safety installations in general.

Discrimination between A and B is said to be "total" if it is provided up to the value of the maximum prospective short-circuit at the point at which B is installed.

By extension, in the tables on the following pages, total discrimination, indicated by T, means that there is discrimination up to the breaking capacity of device B.
Discrimination between A and B is said to be "partial" in the other cases.
The discrimination limit (given in the following tables) is therefore defined. This gives the short-circuit current value below which only MCB B will open and above which MCB A will also open.
There are a number of techniques for providing discrimination:

- Current discrimination, used for terminal circuits which have low shortcircuits.
- Time discrimination, provided by a delay on tripping the upstream MCB
- Logical discrimination, a variant of time discrimination, used on electronic MCBs via a special link between the devices.

Since almost all faults occur during use, partial discrimination may be adequate if the discrimination limit is higher than the value of the maximum short-circuit which may occur at the point of use (or at the end of the trunking). This is referred to as "operating discrimination". This technique is very often adequate, more economical and less restricting in terms of implementation.
The discrimination limit for the association DPX 250 ER (160 A) with Lexic MCB 40 A (C curve) is 6 kA. Since the prospective ISC at the point of installation is 8 kA , the discrimination is not total. However, there is discrimination at the point of use at which the prospective short-circuit is only 3 kA .

Current discrimination

This technique is based on the offset of the intensity of the tripping curves of the upstream and downstream MCBs. It is checked by comparing these curves and checking that they do not overlap. It applies for the overload zone and the short-circuit zone, and the further apart the ratings of the devices, the better the discrimination.

- On overloads

To have discrimination in the overload zone, the ratio of the setting currents (Ir) must be at least 2.

- On short-circuits

To have discrimination in the short circuit zone, the ratio of the magnetic setting currents (Im) must be at least 1.5.
The discrimination limit is then equal to the magnetic release current ImA of the upstream MCB. The discrimination is then total as long as IscB is less than ImA.
Current discrimination is therefore very suitable for terminal circuits where the short-circuits are relatively weak.
In other cases, time discrimination may be used together with current discrimination.

Current discrimination

The discrimination is total for $\mathrm{ISC}_{\mathrm{B}}$

$I_{\mathrm{SC}_{\mathrm{B}}}$: maximum short-circuit at the point at which MCB B is installed
When the downstream MCB B is a limiting device, the short-circuit current is limited in terms of time and amplitude. The discrimination is therefore total if the limited current IscB, which device B allows to pass, is lower than the tripping current of device A

$\mathrm{I}_{\mathrm{SC}_{\mathrm{B}}}$: prospective short-circuit at the point at which the device is installed
$I^{\prime} \mathrm{sc}_{\mathrm{B}}$: short-circuit limited by device B

Time discrimination

This technique is based on the offset of the times of the tripping curves of the MCBs in series. It is checked by comparing the curves and is used for discrimination in the short-circuit zone. It is also used in addition to current discrimination in order to obtain discrimination beyond the magnetic setting current of the upstream MCB (ImA).

The following is necessary:

- It must be possible to set a time delay
on the upstream MCB
- The upstream MCB must be able to withstand the short-circuit current and its effects for the whole period of the time delay
- The trunking through which this current passes must be able to withstand the thermal stresses $\left(I^{2} t\right)$.
The non-tripping time of the upstream device must be longer than the breaking time (including any time delay) of the downstream device.
DPX MCBs have a number of time delay setting positions for creating discrimination with a number of stages.

L7 legrand

DX ${ }^{3}$
MCBs

Technical data

Coordination between Modular Circuit-Breakers and fuses,

three-phase network (+ neutal) $400 / 415 \mathrm{~V} \sim$ according to standard IEC/EN 60947-2:
For TT or TN neutral system in 240/415 V network, to know the breaking capacity of the combination of a double pole breaker (connected between phase and neutral under 230 V) downstream of a triple-pole circuit-breaker, take the values shown in Tables 230/400 V.

		Fuse upstream									
		gG Type									
MCB downstream		≤ 20 A	25 A	32 A	40 A	50 A	63 A	80 A	100 A	125 A	160 A
DX ${ }^{3} 10000$ A/10 kA C and D curves	$\leq 6 \mathrm{~A}$	100 kA	40 kA								
	10 A	100 kA	40 kA								
	16 A	-	100 kA	40 kA							
	20 A	-	-	100 kA	40 kA						
	25 A	-	-	-	100 kA	40 kA					
	32 A	-	-	-	-	100 kA	40 kA				
	40 A	-	-	-	-	-	100 kA	100 kA	100 kA	100 kA	40 kA
	50 A	-	-	-	-	-	-	100 kA	100 kA	100 kA	40 kA
	63 A	-	-	-	-	-	-	100 kA	100 kA	100 kA	40 kA

		Fuse upstream									
		aM Type									
MCB downstream		$\leq 20 \mathrm{~A}$	25 A	32 A	40 A	50 A	63 A	80 A	100 A	125 A	160 A
DX ${ }^{3} 10000$ A/10 kA C and D curves	$\leq 6 \mathrm{~A}$	100 kA	40 kA								
	10 A	100 kA	40 kA								
	16 A	-	100 kA	40 kA							
	20 A	-	-	100 kA	40 kA						
	25 A	-	-	-	100 kA	40 kA					
	32 A	-	-	-	-	100 kA	40 kA				
	40 A	-	-	-	-	-	100 kA	100 kA	100 kA	100 kA	40 kA
	50 A	-	-	-	-	-	-	100 kA	100 kA	100 kA	40 kA
	63 A	-	-	-	-	-	-	100 kA	100 kA	100 kA	40 kA

All these values are also valid for circuit breakers associated to differential blocks.
According to the curves and ratings of circuit breakers, attention to the threshold and size of upstream fuse which must necessarily be higher.

Coordination between Modular Circuit-Breakers, three-phase network (+ neutal) 400 / 415 V $\mathbf{~ a c c o r d i n g ~ t o ~ I E C / E N ~ 6 0 9 4 7 - 2 : ~}$
For TT or TN neutral system in 230/400 V network, to know the breaking capacity of the combination of a double pole breaker (connected between phase and neutral under 230 V) downstream of a triple-pole circuit-breaker, take the values shown in Tables 230/400 V .

		MCB upstream							
		DX ${ }^{3} 10000 / 16 \mathrm{kA}$							
		C and D Curves							
MCB downstream		≤ 25 A	32 A	40 A	50 A	63 A	80 A	100 A	125 A
DX ${ }^{3} 10000$ A C Curves	$\leq 6 \mathrm{~A}$	16 kA	16 kA	16 A	16 kA				
	10 A	16 kA							
	16 A	16 kA							
	20 A	16 kA							
	25 A	-	16 kA						
	32 A	-	-	16 kA					
	40 A	-	-	-	16 kA				
	50 A	-	-	-	-	16 kA	16 kA	16 kA	16 kA
	63 A	-	-	-	-	-	16 kA	16 kA	16 kA
		MCB upstream							
		DX ${ }^{3} 25 \mathrm{kA}$							
		C and D Curves							
MCB downstream		≤ 25 A	32 A	40 A	50 A	63 A	80 A	100 A	125 A
DX ${ }^{3} 10000$ A C Curves	≤ 6 A	25 kA							
	10 A	25 kA							
	16 A	25 kA							
	20 A	25 kA							
	25 A	-	25 kA						
	32 A	-	-	25 kA					
	40 A	-	-	-	25 kA				
	50 A	-	-	-	-	25 kA	25 kA	25 kA	25 kA
	63 A	-	-	-	-	-	25 kA	25 kA	25 kA

[^1]$D X^{3}$
MCBs

Technical data

Coordination between Modular Circuit-Breakers, three-phase network (+ neutal) 400/415 V ~ according to IEC/EN 60947-2:
For TT or TN neutral system in 240/415 V network, to know the breaking capacity of the combination of a double pole breaker (connected between phase and neutral under 230 V) downstream of a triple-pole circuit-breaker, take the values shown in Tables 240/415 V.

		MCB upstream										
		DX 36 kA						DX ${ }^{3} 50 \mathrm{kA}$				
		C Curve						C and D Curves				
MCB downstream		≤ 25 A	32 A	40 A	50 A	63 A	80 A	≤ 25 A	32 A	40 A	50 A	63 A
DX ${ }^{3} 10000$ A C Curves	$\leq 6 \mathrm{~A}$	36 kA	50 kA									
	10 A	36 kA	50 kA									
	16 A	36 kA	50 kA									
	20 A	36 kA	50 kA									
	25 A	-	36 kA	-	50 kA	50 kA	50 kA	50 kA				
	32 A	-	-	36 kA	36 kA	36 kA	36 kA	-	-	50 kA	50 kA	50 kA
	40 A	-	-	-	36 kA	36 kA	36 kA	-	-	-	50 kA	50 kA
	50 A	-	-	-	-	36 kA	36 kA	-	-	-	-	50 kA
	63 A	-	-	-	-	-	36 kA	-	-	-	-	-

All these values are also valid for circuit breakers associated to RCD add-on modules.
According to the curves and ratings of circuit breakers, attention to the magnetic threshold and to the size of upstream circuit breakers which must necessarily be higher.

Coordination between Modular Circuit-Breakers (MCB) and Moulded Case Circuit Breakers (MCCBs),
 three-phase network (+ neutal) $400 / 415 \mathrm{~V} \sim$ according to standard IEC/EN60947-2:

For TT or TN neutral system in 240/415 V network, to know the breaking capacity of the combination of a double pole breaker (connected between phase and neutral under 230 V) downstream of a triple-pole circuit-breaker, take the values shown in Tables $240 / 415 \mathrm{~V}$.

All these values are also valid for circuit breakers associated to differential blocks.
According to the curves and ratings of circuit breakers, attention to the magnetic threshold and to the size of upstream circuit breakers which must necessarily be higher.

L7legrand

DX ${ }^{3}$
MCBs

Technical data

Coordination between Modular Circuit-Breakers (MCB) and Moulded Case Circuit Breakers (MCCBs),

 three-phase network (+ neutal) $400 / 415$ V \sim according to standard IEC/EN60947-2:For TT or TN neutral system in 240/415 V network, to know the breaking capacity of the combination of a double pole breaker (connected between phase and neutral under 230 V) downstream of a triple-pole circuit-breaker, take the values shown in Tables 240/415 V.

		MCCB upstream			
		DPX $^{3} 250$ / DPX ${ }^{3}$ 250+RCD (Thermal-Magnetic \& Electronic)			
		25-36-50 kA - 70 kA			
MCB downstream		100A	160A	200A	250A
DX ${ }^{3} 10000$ A/10 kA C and D curves	$\leq 6 \mathrm{~A}$	25 kA	25 kA	25 kA	25 kA
	10 A	25 kA	25 kA	25 kA	25 kA
	16 A	25 kA	25 kA	25 kA	25 kA
	20 A	25 kA	25 kA	25 kA	25 kA
	25 A	25 kA	25 kA	25 kA	25 kA
	32 A	25 kA	25 kA	25 kA	25 kA
	40 A	25 kA	25 kA	25 kA	25 kA
	50 A	25 kA	25 kA	25 kA	25 kA
	63 A	25 kA	25 kA	25 kA	25 kA

		MCCB upstream												
		DPX / H / L 250(Thermal-Magnetic \& electronic)						DPX 400AB		DPX / DPXH / DPXL 630(Thermal-Magnetic \& electronic)				
		36-70-100 kA						36 kA		36-70-100 kA				
MCB downstream		25A	40A	63A	100A	160A	250A	320A	400A	250A	320A	400A	500A	630A
DX ${ }^{3} 10000$ A/10 kA C and D curves	$\leq 6 \mathrm{~A}$	25 kA												
	10 A	25 kA												
	16 A	25 kA												
	20 A	25 kA												
	25 A	-	25 kA											
	32 A	-	25 kA											
	40 A	-	-	25 kA	25 kA	25 kA	25 kA	20 kA						
	50 A	-	-	25 kA	25 kA	25 kA	25 kA	20 kA						
	63 A	-	-	-	20 kA									

All these values are also valid for circuit breakers associated to differential blocks.
According to the curves and ratings of circuit breakers, attention to the magnetic (or electronic) threshold and to the size of upstream circuit breakers which must necessarily be higher.

Coordination between Modular Circuit-Breakers (MCB) and Moulded Case Circuit Breakers (MCCBs),

three-phase network (+ neutal) 400 / 415 V ~ according to standard IEC/EN60947-2:
For TT or TN neutral system in 240/415 V network, to know the breaking capacity of the combination of a double pole breaker (connected between phase and neutral under 230 V) downstream of a triple-pole circuit-breaker, take the values shown in Tables 240/415 V.

		MCCB upstream	
		DPX / H / L 1250(Thermo-Magnetic)$50-70-100 \mathrm{kA}$	$\begin{gathered} \begin{array}{c} \text { DPX / H } 1600 \\ \text { (Electronic) } \end{array} \\ \hline 36-70 \mathrm{kA} \\ \hline \end{gathered}$
MCB downstr		500 to 1250A	630 to 1600A
DX ${ }^{3} 10000 \mathrm{~A} / 10 \mathrm{kA}$ C and D curves	$\leq 6 \mathrm{~A}$	25 kA	25 kA
	10 A	25 kA	25 kA
	16 A	25 kA	25 kA
	20 A	25 kA	25 kA
	25 A	20 kA	20 kA
	32 A	16 kA	16 kA
	40 A	16 kA	16 kA
	50 A	16 kA	16 kA
	63 A	16 kA	16 kA

All these values are also valid for circuit breakers associated to differential blocks.
According to the curves and ratings of circuit breakers, attention to the magnetic (or electronic) threshold and to the size of upstream circuit breakers which must necessarily be higher.
Coordination between Modular Circuit-Breakers and fuses,
three-phase network (+ neutal) 230/240 V \sim according to standard IEC/EN 60947-2:

		Fuse upstream									
		gG Type									
MCB downstream		$\leq 20 \mathrm{~A}$	25 A	32 A	40 A	50 A	63 A	80 A	100 A	125 A	160 A
DX ${ }^{3} 10000$ A/10 kA C and D curves	$\leq 6 \mathrm{~A}$	100 kA	40 kA								
	10 A	100 kA	40 kA								
	16 A	-	100 kA	40 kA							
	20 A	-	-	100 kA	40 kA						
	25 A	-	-	-	100 kA	40 kA					
	32 A	-	-	-	-	100 kA	40 kA				
	40 A	-	-	-	-	-	100 kA	100 kA	100 kA	100 kA	40 kA
	50 A	-	-	-	-	-	-	100 kA	100 kA	100 kA	40 kA
	63 A	-	-	-	-	-	-	100 kA	100 kA	100 kA	40 kA
		Fuse upstream									
		aM Type									
MCB downstream		≤ 20 A	25 A	32 A	40 A	50 A	63 A	80 A	100 A	125 A	160 A
DX ${ }^{3} 10000$ A/10 kA C and D curves	$\leq 6 \mathrm{~A}$	100 kA	40 kA								
	10 A	100 kA	40 kA								
	16 A	-	100 kA	40 kA							
	20 A	-	-	100 kA	40 kA						
	25 A	-	-	-	100 kA	40 kA					
	32 A	-	-	-	-	100 kA	40 kA				
	40 A	-	-	-	-	-	100 kA	100 kA	100 kA	100 kA	40 kA
	50 A	-	-	-	-	-	-	100 kA	100 kA	100 kA	40 kA
	63 A	-	-	-	-	-	-	100 kA	100 kA	100 kA	40 kA

All these values are also valid for circuit breakers associated to differential blocks.
According to the curves and ratings of circuit breakers, attention to the threshold and to the size of upstream fuses which must necessarily be higher

DX ${ }^{3}$
MCBs

Technical data

Coordination between modular circuit-breakers, three-phase network (+ neutal) 230/240 V \sim according to IEC/EN 60947-2:

		MCB upstream							
		DX ${ }^{3} 10000 / 16 \mathrm{kA}$							
		B, C and D Curves							
MCB downstream		≤ 25 A	32 A	40 A	50 A	63 A	80 A	100 A	125 A
$\begin{aligned} & \text { DX }^{3} 10000 \mathrm{~A} \\ & \text { C Curves } \end{aligned}$	$\leq 6 \mathrm{~A}$	32 kA	32 kA	25 kA					
	10 A	32 kA	32 kA	25 kA					
	16 A	32 kA	32 kA	25 kA					
	20 A	32 kA	32 kA	25 kA					
	25 A	-	32 kA	25 kA					
	32 A	-	-	25 kA					
	40 A	-	-	-	25 kA				
	50 A	-	-	-	-	25 kA	25 kA	25 kA	25 kA
	63 A	-	-	-	-	-	25 kA	25 kA	25 kA
		MCB upstream							
		DX ${ }^{3} 25 \mathrm{kA}$							
MCB downstream		≤ 25 A	32 A	40 A	50 A	63 A	80 A	100 A	125 A
DX ${ }^{3} 10000$ A C Curves	$\leq 6 \mathrm{~A}$	50 kA	50 kA	25 kA					
	10 A	50 kA	50 kA	25 kA					
	16 A	50 kA	50 kA	25 kA					
	20 A	50 kA	50 kA	25 kA					
	25 A	-	50 kA	25 kA					
	32 A	-	-	25 kA					
	40 A	-	-	-	25 kA				
	50 A	-	-	-	-	25 kA	25 kA	25 kA	25 kA
	63 A	-	-	-	-	-	25 kA	25 kA	25 kA

All these values are also valid for circuit breakers associated to RCD add-on modules.
According to the curves and ratings of circuit breakers, attention to the magnetic threshold and to the size of upstream circuit breakers which must necessarily be higher.

Coordination between Modular Circuit-Breakers, three-phase network (+ neutal) 230/240 V \sim according to IEC/EN 60947-2:

		MCB upstream										
		DX ${ }^{3} 36 \mathrm{kA}$						DX ${ }^{3} 50 \mathrm{kA}$				
MCB downstream		≤ 25 A	32 A	40 A	50 A	63 A	80 A	≤ 25 A	32 A	40 A	50 A	63 A
DX ${ }^{3} 10000$ A C Curves	$\leq 6 \mathrm{~A}$	50 kA										
	10 A	50 kA										
	16 A	50 kA										
	20 A	50 kA										
	25 A	-	50 kA	-	50 kA	50 kA	50 kA	50 kA				
	32 A	-	-	50 kA	50 kA	50 kA	50 kA	-	-	50 kA	50 kA	50 kA
	40 A	-	-	-	50 kA	50 kA	50 kA	-	-	-	50 kA	50 kA
	50 A	-	-	-	-	50 kA	50 kA	-	-	-	-	50 kA
	63 A	-	-	-	-	-	50 kA	-	-	-	-	-

All these values are also valid for circuit breakers associated to RCD add-on modules.
According to the curves and ratings of circuit breakers, attention to the magnetic threshold and to the size of upstream circuit breakers which must necessarily be higher.
Coordination between Modular Circuit-Breakers (MCB) and Moulded Case Circuit Breakers (MCCBs),
three-phase network (+ neutal) 230/240 V \sim according to standard IEC/EN 60947-2:

		MCCB upstream							
		DPX ${ }^{3} 160$ / DPX ${ }^{3} 160$ + RCD							
		16 kA							
MCB downstream		16 A	25 A	40 A	63 A	80 A	100 A	125 A	160 A
DX ${ }^{3} 10000 \mathrm{~A} / 10 \mathrm{kA}$ C and D curves	$\leq 6 \mathrm{~A}$	28 kA							
	10 A	28 kA							
	16 A	-	28 kA						
	20 A	-	28 kA						
	25 A	-	-	28 kA					
	32 A	-	-	28 kA					
	40 A	-	-	-	28 kA				
	50 A	-	-	-	28 kA				
	63 A	-	-	-	-	28 kA	28 kA	28 kA	28 kA

All these values are also valid for circuit breakers associated to differential blocks.
According to the curves and ratings of circuit breakers, attention to the magnetic threshold and to the size of upstream circuit breakers which must necessarily be higher.

L7 legrand

DX ${ }^{3}$
MCBs

Technical data

Coordination between Modular Circuit-Breakers (MCB) and Moulded Case Circuit Breakers (MCCBs), three-phase network (+ neutal) 230/240 $\quad \sim$ according to standard IEC/EN 60947-2:

		MCCB upstream							
		DPX ${ }^{3} 160$ / DPX ${ }^{3} 160$ + RCD							
		25 kA							
MCB downstream		16 A	25 A	40 A	63 A	80 A	100 A	125 A	160 A
DX ${ }^{3} 10000$ A/10 kA C and D curves	$\leq 6 \mathrm{~A}$	40 kA							
	10 A	40 kA							
	16 A	-	40 kA						
	20 A	-	40 kA						
	25 A	-	-	40 kA					
	32 A	-	-	40 kA					
	40 A	-	-	-	40 kA				
	50 A	-	-	-	40 kA				
	63 A	-	-	-	-	40 kA	40 kA	40 kA	40 kA
		MCCB upstream							
		DPX ${ }^{3} 160$ / DPX ${ }^{3} 160$ + RCD							
		36-50 kA							
MCB downstream		16 A	25 A	40 A	63 A	80 A	100 A	125 A	160 A
DX ${ }^{3} 10000$ A/10 kA C and D curves	$\leq 6 \mathrm{~A}$	50 kA							
	10 A	50 kA							
	16 A	-	50 kA						
	20 A	-	50 kA						
	25 A	-	-	50 kA					
	32 A	-	-	50 kA	-	50 kA	50 kA	50 kA	50 kA
	40 A	-	-	-	50 kA				
	50 A				50 kA				
	63 A					50 kA	50 kA	50 kA	50 kA

All these values are also valid for circuit breakers associated to differential blocks.
According to the curves and ratings of circuit breakers, attention to the magnetic threshold and to the size of upstream circuit breakers which must necessarily be higher.

Coordination between Modular Circuit-Breakers (MCB) and Moulded Case Circuit Breakers (MCCBs), three-phase network (+ neutal) 230/240 V ~ according to standard IEC/EN 60947-2:

		MCCB upstream			
		DPX 250 / DPX ${ }^{3}$ 250+RCD (Thermal-magnetic \& electronic)			
		25 kA			
MCB downstream		100 A	160 A	200 A	250 A
DX ${ }^{3} 10000$ A/10 kA C and D curves	$\leq 6 \mathrm{~A}$	40 kA	40 kA	40 kA	40 kA
	10 A	40 kA	40 kA	40 kA	40 kA
	16 A	40 kA	40 kA	40 kA	40 kA
	20 A	40 kA	40 kA	40 kA	40 kA
	25 A	40 kA	40 kA	40 kA	40 kA
	32 A	40 kA	40 kA	40 kA	40 kA
	40 A	40 kA	40 kA	40 kA	40 kA
	50 A	40 kA	40 kA	40 kA	40 kA
	63 A	40 kA	40 kA	40 kA	40 kA

All these values are also valid for circuit breakers associated to differential blocks.

DX ${ }^{3}$
MCBs

Technical data

Coordination between Modular Circuit-Breakers (MCB) and Moulded Case Circuit Breakers (MCCBs), three phase network (+ neutal) 230/240 V \sim according to standard IEC/EN 60947-2:

		MCCB upstream									
		$\begin{gathered} \text { DPX }^{3} 250 / D P X^{3} 250+\text { RCD } \\ \text { (Thermal-magnetic \& electronic) } \end{gathered}$				DPX / H/L 250(Thermal-magnetic \& electronic)					
		36-50-70 kA				36-70-100 kA					
MCB downstream		100 A	160 A	200 A	250 A	25 A	40 A	63 A	100 A	160 A	250 A
DX ${ }^{3} 10000$ A/10 kA C and D curves	$\leq 6 \mathrm{~A}$	50 kA									
	10 A	50 kA									
	16 A	50 kA									
	20 A	50 kA									
	25 A	50 kA	50 kA	50 kA	50 kA	-	50 kA				
	32 A	50 kA	50 kA	50 kA	50 kA	-	50 kA				
	40 A	50 kA	50 kA	50 kA	50 kA	-	-	50 kA	50 kA	50 kA	50 kA
	50 A	50 kA	50 kA	50 kA	50 kA	-	-	50 kA	50 kA	50 kA	50 kA
	63 A	50 kA	50 kA	50 kA	50 kA	-			50 kA	50 kA	50 kA

		MCCB upstream						
		DPX 400AB		DPX / DPXH / DPXL 630MT(Thermal-magnetic \& electronic)				
		36 kA		36-70-100 kA				
MCB downstream		320 A	400 A	250 A	320 A	400 A	500 A	630 A
DX ${ }^{3} 10000$ A/10 kA C and D curves	$\leq 6 \mathrm{~A}$	50 kA						
	10 A	50 kA						
	16 A	50 kA						
	20 A	50 kA						
	25 A	50 kA						
	32 A	50 kA						
	40 A	50 kA						
	50 A	36 kA						
	63 A	36 kA						

All these values are also valid for circuit breakers associated to differential blocks.
According to the curves and ratings of circuit breakers, attention to the magnetic (or electronic) threshold and to the size of upstream circuit breakers which must necessarily be higher
Coordination between Modular Circuit-Breakers(MCB) and Moulded Case Circuit Breakers (MCCBs), three phase network (+ neutal) $230 / 240 \mathrm{~V} \sim$ according to standard IEC/EN 60947-2:

		MCCB upstream	
		DPX/H/L 1250 (Thermalmagnetic)	DPX / H 1600 (electronic)
		50-70-100 kA	36-70 kA
MCB downstream		500 to 1250 A	630 to 1600 A
DX ${ }^{3} 10000$ A/10 kA C and D curves	$\leq 6 \mathrm{~A}$	50 kA	50 kA
	10 A	50 kA	50 kA
	16 A	50 kA	50 kA
	20 A	50 kA	50 kA
	25 A	50 kA	50 kA
	32 A	50 kA	50 kA
	40 A	50 kA	50 kA
	50 A	36 kA	36 kA
	63 A	36 kA	36 kA

All these values are also valid for circuit breakers associated to differential blocks.
According to the curves and ratings of circuit breakers, attention to the magnetic (or electronic) threshold and to the size of upstream circuit breakers which must necessarily be higher.

Selectivity between two levels of protection

- The downstream circuit breaker must always have a magnetic threshold and a rated current lower than those of the upstream protection.
- Selectivity is indicated total (T) if there is selectivity up to the value of breaking capacity (according to IEC / EN 60947-2) of the downstream circuit breaker.

Selectivity between modular circuits breakers and fuses:

- Selectivity limit at 400 V : values in Ampere.

		Fuse upstream							
		gG Type							
MCB downstream		32 A	40 A	50 A	63 A	80 A	100 A	125 A	160 A
DX ${ }^{3} 10000$ A/10 kA C and D curves	$\leq 6 \mathrm{~A}$	1300	1900	2500	4000	4600	11000	T	T
	10 A	-	1600	2200	3200	3600	7000	11000	T
	16 A	-	1400	1800	2600	3000	5600	8000	15000
	20 A	-	1200	1500	2200	2500	4600	6300	10000
	25 A	-	-	1300	2000	2200	4100	5500	9000
	32 A	-	-	1200	1700	1900	3500	4500	8000
	40 A	-	-	-	-	1700	3000	4000	6000
	50 A	-	-	-	-	16000	2600	3500	5000
	63 A	-	-	-	-	-	2400	3300	5000

		Fuse upstream								
		aM Type								
MCB downstream		25 A	32 A	40 A	50 A	63 A	80 A	100 A	125 A	160 A
DX ${ }^{3} 10000$ A/10 kA C and D curves	$\leq 6 \mathrm{~A}$	1000	1600	2100	3200	6200	15000	T	T	T
	10 A	-	1100	1700	2500	5000	7800	12000	T	T
	16 A	-	1000	1400	2100	4000	6000	9000	T	T
	20 A	-	-	1300	1800	3400	5100	7000	14000	T
	25 A	-	-	1100	1600	3000	4500	6000	9300	14000
	32 A	-	-	-	1300	2400	3800	5000	7700	9000
	40 A	-	-	-	-	2100	3100	4200	6400	7000
	50 A	-	-	-	-	2000	2900	3700	6000	6000
	63 A	-	-	-	-	-	2800	3500	5500	6000

[^2]
L7 legrand

DX ${ }^{3}$
мCBs

Technical data

Selectivity between modular circuits breakers:

Selectivity limit at $400 \mathrm{~V} \sim$: values in Ampere.

		MCB upstream										
		DX ${ }^{3} 25 \mathrm{kA}$										
MCB downstream		10 A	16 A	20 A	25 A	32 A	40 A	50 A	63 A	80 A	100 A	125 A
DX ${ }^{3} 10000$ A/10 kA C and D curves	$\leq 6 \mathrm{~A}$	40	64	80	100	700	1200	1500	3000	4000	T	T
	10 A	-	64	80	100	500	700	1000	1800	3000	5000	T
	16 A	-	-	80	100	300	500	700	1300	2000	3600	5500
	20 A	-	-	-	100	-	400	500	1000	1600	3000	4000
	25 A	-	-	-	-	-	-	500	800	1300	2400	3300
	32 A	-	-	-	-	-	-	500	600	1000	1800	2700
	40 A	-	-	-	-	-	-	-	600	800	1600	2400
	50 A	-	-	-	-	-	-	-	-	800	900	1700
	63 A	-	-	-	-	-	-	-	-	-	900	1200

		MCB upstream										
		DX ${ }^{3} 25 \mathrm{kA}$										
MCB downstream		10 A	16 A	20 A	25 A	32 A	40 A	50 A	63 A	80 A	100 A	125 A
DX ${ }^{3} 10000$ A/10 kA C and D curves	$\leq 6 \mathrm{~A}$	75	120	150	187	700	1200	1500	3000	4000	T	T
	10 A	-	120	150	187	500	700	1000	1800	3000	5000	T
	16 A	-	-	150	187	300	500	700	1300	2000	3600	5500
	20 A	-	-	-	187	300	400	500	1000	1600	3000	4000
	25 A	-	-	-	-	240	400	500	800	1300	2400	3300
	32 A	-	-	-	-	-	300	500	600	1000	1800	2700
	40 A	-	-	-	-	-	-	400	600	800	1600	2400
	50 A	-	-	-	-	-	-	-	500	800	900	1700
	63 A	-	-	-	-	-	-	-	-	650	900	1200

$\mathrm{T}=$ Total discrimination

Selectivity between modular circuits breakers:

Selectivity limit at $400 \mathrm{~V} \sim$: values in Ampere.

		MCB upstream										
		DX ${ }^{3} 25 \mathrm{kA}$										
MCB downstream		10 A	16 A	20 A	25 A	32 A	40 A	50 A	63 A	80 A	100 A	125 A
DX ${ }^{3} 10000 \mathrm{~A} / 10 \mathrm{kA}$ C and D curves	$\leq 6 \mathrm{~A}$	120	192	240	500	700	1200	1500	3000	4000	T	T
	10 A	-	192	240	300	500	700	1000	1800	3000	5000	T
	16 A	-	-	240	300	384	500	700	1300	2000	3600	5500
	20 A	-	-	-	300	384	480	600	1000	1600	3000	4000
	25 A	-	-	-	-	384	480	600	800	1300	2400	3300
	32 A	-	-	-	-	-	480	600	756	1100	1450	2700
	40 A	-	-	-	-	-	-	600	756	1000	1250	2400
	50 A	-	-	-	-	-	-	-	756	950	1200	1700
	63 A	-	-	-	-	-	-	-	-	950	1200	1500

		MCB upstream								
		DX ${ }^{3} 36 \mathrm{kA}$								
MCB downstream		10 A	16 A	20 A	25 A	32 A	40 A	50 A	63 A	80 A
DX ${ }^{3} 10000$ A/10 kA C and D curves	$\leq 6 \mathrm{~A}$	75	120	170	500	700	1200	1500	3000	4000
	10 A	-	120	150	210	500	700	1000	1800	3000
	16 A	-	-	150	187	300	500	700	1300	2000
	20 A	-	-	-	187	300	400	500	1000	1600
	25 A	-	-	-	-	240	400	500	800	1300
	32 A	-	-	-	-	-	300	500	600	1000
	40 A	-	-	-	-	-	-	400	600	800
	50 A	-	-	-	-	-	-	-	500	800
	63 A	-	-	-	-	-	-	-	-	650

$T=$ Total discrimination

DX ${ }^{3}$
MCBs

Technical data

Selectivity between modular circuits breakers:

Selectivity limit at 415 V ~: values in Ampere.

		MCB upstream							
		DX ${ }^{3} 50 \mathrm{kA}$							
MCB downstream		10 A	16 A	20 A	25 A	32 A	40 A	50 A	63 A
DX ${ }^{3} 10000$ A/10 kA C and D curves	$\leq 6 \mathrm{~A}$	-	64	170	500	700	1200	1500	3000
	10 A	-	-	150	210	500	700	1000	1800
	16 A	-	-	-	-	300	500	700	1300
	20 A	-	-	-	-	-	400	500	1000
	25 A	-	-	-	-	-	-	500	800
	32 A	-	-	-	-	-	-	500	600
	40 A	-	-	-	-	-	-	-	600
	50 A	-	-	-	-	-	-	-	-
	63 A	-	-	-	-	-	-	-	-

		MCB upstream							
		DX ${ }^{3} 50 \mathrm{kA}$							
MCB downstream		10 A	16 A	20 A	25 A	32 A	40 A	50 A	63 A
DX ${ }^{3} 10000$ A/10 kA C and D curves	$\leq 6 \mathrm{~A}$	75	120	170	500	700	1200	1500	3000
	10 A	-	120	150	210	500	700	1000	1800
	16 A	-	-	150	187	300	500	700	1300
	20 A	-	-	-	187	300	400	500	1000
	25 A	-	-	-	-	240	400	500	800
	32 A	-	-	-	-	-	300	500	600
	40 A	-	-	-	-	-	-	400	600
	50 A	-	-	-	-	-	-	-	500
	63 A	-	-	-	-	-	-	-	-

Selectivity between modular circuits breakers:
Selectivity limit at 415 V ~: values in Ampere.

		MCB upstream							
		DX ${ }^{3} 50 \mathrm{kA}$							
MCB downstream		10 A	16 A	20 A	25 A	32 A	40 A	50 A	63 A
DX ${ }^{3} 10000$ A/10 kA C and D curves	$\leq 6 \mathrm{~A}$	120	192	240	500	700	1200	1500	3000
	10 A	-	192	240	300	500	700	1000	1800
	16 A	-	-	240	300	384	500	700	1300
	20 A	-	-	-	300	384	480	600	1000
	25 A	-	-	-	-	384	480	600	800
	32 A	-	-	-	-	-	480	600	756
	40 A	-	-	-	-	-	-	600	756
	50 A	-	-	-	-	-	-	-	756
	63 A	-	-	-	-	-	-	-	

Selectivity between modular circuits breakers (MCB) and Moulded Case Circuit Breakers (MCCBs):
Selectivity limit at 415 V ~: values in Ampere.

		MCCB upstream							
		$\begin{gathered} D P X^{3} 160 \\ D P X^{3} 160+R C D \end{gathered}$							
		16-25-36-50 kA							
MCB downstream		16 A	25 A	40 A	63 A	80 A	100 A	125 A	160 A
DX ${ }^{3} 10000$ A/ 10 kA C and D curves	$\leq 6 \mathrm{~A}$	6000	12000	12000	T	T	T	T	T
	10 A	5000	7000	7000	7000	T	T	T	T
	16 A	-	6000	6000	6000	6000	T	T	T
	20 A	-	5000	5000	5000	5000	6000	T	T
	25 A	-	-	4500	4500	4500	4500	8500	T
	32 A	-	-	-	3000	4000	4000	7000	10000
	40 A	-	-	-	3000	3000	3000	6000	8000
	50 A	-	-	-	-	3000	3000	5500	7000
	63 A	-	-	-	-	3000	3000	5000	6000

Selectivity between modular circuits breakers (MCB) and Moulded Case Circuit Breakers (MCCBs):
Selectivity limit at 415 V ~: values in Ampere.

		MCCB upstream							
		$\mathrm{DPX}^{3} 250$DPX ${ }^{3} 250+$ diff(Thermo-magnetic \& electronic)				DPX 400 AB		DPX / H / L 1250 (Thermomagnetic)	DPX / H 1600 (electronic)
		25-36-50-70 kA				36 kA		50-70-100 kA	36-70 kA
MCB downstream		100 A	160 A	200 A	250 A	320 A	400 A	500 to 1250 A	630 to 1600 A
DX ${ }^{3} 10000$ A/10 kA C and D curves	$\leq 6 \mathrm{~A}$	T	T	T	T	T	T	T	T
	10 A	T	T	T	T	T	T	T	T
	16 A	T	T	T	T	T	T	T	T
	20 A	T	T	T	T	T	T	T	T
	25 A	T	T	T	T	T	T	T	T
	32 A	5000	T	T	T	T	T	T	T
	40 A	5000	T	T	T	T	T	T	T
	50 A	4000	T	T	T	T	T	T	T
	63 A	4000	T	T	T	T	T	T	T

Ll legrand

DX ${ }^{3}$
MCBs

Technical data

Time current characteristics for C curve

Time current characteristics for D curve

Time current characteristics for 80-125 A

Selection chart*

DX ${ }^{3}$ MCBs (10 kA) and RCBOs 3 phase motor application

Motor H.P.	KW	MCB rating (A)	
		Star Delta	DOL
1	0.75	-	1.6 A
1.5	1.10	-	2 A
2	1.50	-	3 A
3	2.25	-	4 A
4	3.00	-	10 A
5	3.75	10 A	10 A
6	4.50	10 A	10 A
7.5	5.50	16 A	16 A
10	7.50	16 A	20 A
12.5	9.30	20 A	25 A
15	11.00	25 A	32 A
17.5	13.00	25 A	32 A
20	15.00	40 A	40 A
25	18.50	40 A	50 A
30	22.50	50 A	63 A
35	26.00	63 A	-

For MCB/RCBO ratings :

Single phase $=\mathrm{P}=\mathrm{VI}$
Three phase $\quad=P=\sqrt{3} \mathrm{VI} \operatorname{Cos} \varphi=1.732 \times \mathrm{VI} \times 0.8$
Note : One lighting circuit can have upto 800 W or upto 10 points.
One power circuit can have upto 3000 W or upto 2 power points.
The data given above is only for guidance
The exact rating must be selected only after considering the motor characteristics.

Technical data

Isolators

Specifications	IEC 60947-3	
Number of poles	DP, TP, FP	
Utilization category	AC22A	
Rated operational voltage and frequency	$415 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	
Insulation voltage Ui	500 V AC	
Impulse voltage Uimp	6 kV	
Short circuit making capacity Icm	1000 A	
Endurance	Electrical - 1500 operations with load AC22A Mechanical - 10000 operation	
Mounting position	Vertical / Horizontal / Upside down / On the side	
Fixing	On symmetric rail EN/IEC 60715 or DIN 35	
Maximum cable size	Top/Bottom	$1 \times 1.5 \mathrm{~mm}^{2}$ to $35 \mathrm{~mm}^{2}$
	Rigid cable	$2 \times 1.5 \mathrm{~mm}^{2}$ to $16 \mathrm{~mm}^{2}$
	Top/Bottom	$1 \times 1.5 \mathrm{~mm}^{2}$ to $25 \mathrm{~mm}^{2}$
	Flexible cable	$2 \times 1.5 \mathrm{~mm}^{2}$ to $10 \mathrm{~mm}^{2}$
Applied connection torque	Recommended: 3 Nm Minimum : 2 Nm Maximum: 3.5 Nm	
Permissible ambient temperature	Maximum $+70^{\circ} \mathrm{C}$ Minimum $-25^{\circ} \mathrm{C}$	

L7 legrand

DX ${ }^{3}$ RCDS

Technical data for DX 3 RCDs

| | RCCB | | | |
| :--- | :--- | :---: | :---: | :---: | :---: |
| | | Type AC | Type A-S | Type Hpi |
| Specification | IS 12640 (part 1) 2008
 IEC 61008-1 | IEC 61008-1
 EN 61008-1 | EN 61008-1
 IEC 61008-1 | |
| No. of modules | - Double pole | 2 | 2 | 2 |
| | - Four pole | 4 | 4 | 4 |

Electrical characteristics

Nominal rating In (A)	- Double pole Rated sensitivity (mA)
- Four pole	
- Double pole pole	

Rated impulse withstand voltage Uimp (kV)

Rated making \& breaking capacity (Im)

- Up to 40 A
- From 63 A and above

Rated residual making \& breaking capacity ($1 \Delta \mathrm{~m}$)

- Up to 40 A
- From 63 A and above

Rated conditional short circuit current (Inc)
Rated conditional residual short circuit current (ILC)
Rated service short circuit capacity (Ics)
Rated short circuit capacity (Icn)
Operating temperature (${ }^{\circ} \mathrm{C}$)

Endurance (0.C cycle)	$\frac{- \text { Mechanical }}{}$- On load at in $X \cos \varphi 0.9$ $\frac{- \text { Via test button }}{- \text { - By fault current (sensitivity) }}$

Testing

Fault indication

- Earth leakage

	- Overload and shortcut
Resetting	
Terminals	- Rigid

25, 40, 63, 80, 100	63, 80	25, 40, 63, 80
25, 40, 63, 80, 100	25, 40, 63, 80	25, 40, 63, 80
30, 100, 300	300	30
30, 100, 300	300	30
$50 / 60$	50 / 60	$50 / 60$
230	230	230
$230 / 415$	400	400
12	12	12
170	170	170
196	196	196
250	250	250
500	500	500
6	6	6
As per IS 12640 (part 1) 2008, IEC 61008-1		
500 A	-	500 A
$10 \times \mathrm{ln}$	630 A	630 A
1000 A	-	1000 A
1000 A	1000 A	1000 A
10000 A	10000 A	10000 A
10000 A	10000 A	10000 A
-	-	-
-	-	-
- 25 to 70	- 25 to 70	- 25 to 70
20,000	20,000	20,000
10,000	10,000	10,000
2,000	2,000	2,000
2,000	2,000	2,000
By pressing test button grey dolly will come to OFF position It is recommended to test RCCB once a month	By pressing test button grey dolly will come to OFF position It is recommended to test RCCB once a month	By pressing test button, grey dolly will come to OFF position It is recommended to test RCCB once a month
Grey dolly will come to OFF position	Grey dolly will come to OFF position	Grey dolly will come to OFF position
-	-	-
Switch on grey dolly	Switch on grey dolly	Switch on grey dolly
$1-35$ sq. mm	$1-35$ sq. mm	$1-35$ sq. mm
$1-25$ sq. mm	1-25 sq. mm	$1-25$ sq. mm

Type of protection

Earth leakage	\bullet	\bullet		•
Overload	-	-	-	
Short circuit	-	-	-	

Add on electrical accessories*

Auxiliary	-	-	-
Fault signaling	-	-	-
Shunt trip	-	-	-
Under voltage	-	-	-
Over voltage	-	-	-

[^3]- Between phase and neutra

$6,10,16,25,32,40,63$	$6,10,16,20,25,32$	25, 32, 40	25, 32, 40
16, 25, 32, 40, 63	10, 16, 20, 25, 32	-	-
30, 100, 300	30, 300	30	30,300
30, 100, 300	-	-	-
50	50	$50 / 60$	$50 / 60$
230	230	230	-
415	415	-	415
12	12	12	12
170	170	170	-
196	196	-	196
500	250	250	-
500	500	-	500
4	6	6	6
As per IS 12640 (part 2) 2008, IEC 61009-1			
10000 A	6000 A	6000 A	6000 A
10000 A	-	-	-
10000 A	3000 A	3000 A	3000 A
10000 A	-	-	-
-	-	-	-
-	-	-	-
7500 A	6000 A	6000 A	6000 A
10000 A	6000 A	6000 A	6000 A
- 25 to 70			
20,000	20,000	20,000	20,000
10,000	10,000	10,000	10,000
1,000	1,000	1,000	1,000
1,000	1,000	1,000	1,000
By pressing test button, black dolly will come to OFF position It is recommended to test RCBO once a month	By pressing test button, black dolly will come to OFF position It is recommended to test RCBO once a month	By pressing test button, black dolly will come to OFF position It is recommended to test RCBO once a month	By pressing test button, black dolly will come to OFF position It is recommended to test RCBO once a month
Black \& blue dolly will come to OFF position	Black dolly will come to OFF position \& blue indicator will appear on front face window	Black dolly will come to OFF position \& blue indicator will appear on front face window	Black dolly will come to OFF position \& blue indicator will appear on front face window
Black dolly will come to OFF position			
Switch on black dolly			
$1-35$ sq. mm	0.75-16 sq. mm	0.75-16 sq. mm	0.75-16 sq. mm
1-25 sq. mm	$0.75-10$ sq. mm	$0.75-10$ sq. mm	$0.75-10$ sq. mm

$6,10,16,25,32,40,63$	$6,10,16,20,25,32$	25, 32, 40	25, 32, 40
16, 25, 32, 40, 63	10, 16, 20, 25, 32	-	-
30, 100, 300	30, 300	30	30,300
30, 100, 300	-	-	-
50	50	$50 / 60$	$50 / 60$
230	230	230	-
415	415	-	415
12	12	12	12
170	170	170	-
196	196	-	196
500	250	250	-
500	500	-	500
4	6	6	6
As per IS 12640 (part 2) 2008, IEC 61009-1			
10000 A	6000 A	6000 A	6000 A
10000 A	-	-	-
10000 A	3000 A	3000 A	3000 A
10000 A	-	-	-
-	-	-	-
-	-	-	-
7500 A	6000 A	6000 A	6000 A
10000 A	6000 A	6000 A	6000 A
- 25 to 70			
20,000	20,000	20,000	20,000
10,000	10,000	10,000	10,000
1,000	1,000	1,000	1,000
1,000	1,000	1,000	1,000
By pressing test button, black dolly will come to OFF position It is recommended to test RCBO once a month	By pressing test button, black dolly will come to OFF position It is recommended to test RCBO once a month	By pressing test button, black dolly will come to OFF position It is recommended to test RCBO once a month	By pressing test button, black dolly will come to OFF position It is recommended to test RCBO once a month
Black \& blue dolly will come to OFF position	Black dolly will come to OFF position \& blue indicator will appear on front face window	Black dolly will come to OFF position \& blue indicator will appear on front face window	Black dolly will come to OFF position \& blue indicator will appear on front face window
Black dolly will come to OFF position			
Switch on black dolly			
$1-35$ sq. mm	0.75-16 sq. mm	0.75-16 sq. mm	0.75-16 sq. mm
1-25 sq. mm	$0.75-10$ sq. mm	$0.75-10$ sq. mm	$0.75-10$ sq. mm

$6,10,16,25,32,40,63$	$6,10,16,20,25,32$	25, 32, 40	25, 32, 40
16, 25, 32, 40, 63	10, 16, 20, 25, 32	-	-
30, 100, 300	30, 300	30	30,300
30, 100, 300	-	-	-
50	50	$50 / 60$	$50 / 60$
230	230	230	-
415	415	-	415
12	12	12	12
170	170	170	-
196	196	-	196
500	250	250	-
500	500	-	500
4	6	6	6
As per IS 12640 (part 2) 2008, IEC 61009-1			
10000 A	6000 A	6000 A	6000 A
10000 A	-	-	-
10000 A	3000 A	3000 A	3000 A
10000 A	-	-	-
-	-	-	-
-	-	-	-
7500 A	6000 A	6000 A	6000 A
10000 A	6000 A	6000 A	6000 A
- 25 to 70			
20,000	20,000	20,000	20,000
10,000	10,000	10,000	10,000
1,000	1,000	1,000	1,000
1,000	1,000	1,000	1,000
By pressing test button, black dolly will come to OFF position It is recommended to test RCBO once a month	By pressing test button, black dolly will come to OFF position It is recommended to test RCBO once a month	By pressing test button, black dolly will come to OFF position It is recommended to test RCBO once a month	By pressing test button, black dolly will come to OFF position It is recommended to test RCBO once a month
Black \& blue dolly will come to OFF position	Black dolly will come to OFF position \& blue indicator will appear on front face window	Black dolly will come to OFF position \& blue indicator will appear on front face window	Black dolly will come to OFF position \& blue indicator will appear on front face window
Black dolly will come to OFF position			
Switch on black dolly			
$1-35$ sq. mm	0.75-16 sq. mm	0.75-16 sq. mm	0.75-16 sq. mm
1-25 sq. mm	$0.75-10$ sq. mm	$0.75-10$ sq. mm	$0.75-10$ sq. mm

Type AC
IS 12640 (part 2) 2008 IEC 61009-1

4

7

By pressing test button, black
dolly will come to OFF position
It is recommended to test
RCBO once a month
Black \& blue dolly will come to OFF position

Black dolly will come to OFF position
Switch on black dolly
$1-35$ sq. mm
$1-25$ sq. mm

$6,10,16,25,32,40,63$	$6,10,16,20,25,32$	25, 32, 40	25, 32, 40
16, 25, 32, 40, 63	10, 16, 20, 25, 32	-	-
30, 100, 300	30, 300	30	30,300
30, 100, 300	-	-	-
50	50	$50 / 60$	$50 / 60$
230	230	230	-
415	415	-	415
12	12	12	12
170	170	170	-
196	196	-	196
500	250	250	-
500	500	-	500
4	6	6	6
As per IS 12640 (part 2) 2008, IEC 61009-1			
10000 A	6000 A	6000 A	6000 A
10000 A	-	-	-
10000 A	3000 A	3000 A	3000 A
10000 A	-	-	-
-	-	-	-
-	-	-	-
7500 A	6000 A	6000 A	6000 A
10000 A	6000 A	6000 A	6000 A
- 25 to 70			
20,000	20,000	20,000	20,000
10,000	10,000	10,000	10,000
1,000	1,000	1,000	1,000
1,000	1,000	1,000	1,000
By pressing test button, black dolly will come to OFF position It is recommended to test RCBO once a month	By pressing test button, black dolly will come to OFF position It is recommended to test RCBO once a month	By pressing test button, black dolly will come to OFF position It is recommended to test RCBO once a month	By pressing test button, black dolly will come to OFF position It is recommended to test RCBO once a month
Black \& blue dolly will come to OFF position	Black dolly will come to OFF position \& blue indicator will appear on front face window	Black dolly will come to OFF position \& blue indicator will appear on front face window	Black dolly will come to OFF position \& blue indicator will appear on front face window
Black dolly will come to OFF position			
Switch on black dolly			
$1-35$ sq. mm	0.75-16 sq. mm	0.75-16 sq. mm	0.75-16 sq. mm
1-25 sq. mm	$0.75-10$ sq. mm	$0.75-10$ sq. mm	$0.75-10$ sq. mm

$6,10,16,25,32,40,63$	$6,10,16,20,25,32$	25, 32, 40	25, 32, 40
16, 25, 32, 40, 63	10, 16, 20, 25, 32	-	-
30, 100, 300	30, 300	30	30,300
30, 100, 300	-	-	-
50	50	$50 / 60$	$50 / 60$
230	230	230	-
415	415	-	415
12	12	12	12
170	170	170	-
196	196	-	196
500	250	250	-
500	500	-	500
4	6	6	6
As per IS 12640 (part 2) 2008, IEC 61009-1			
10000 A	6000 A	6000 A	6000 A
10000 A	-	-	-
10000 A	3000 A	3000 A	3000 A
10000 A	-	-	-
-	-	-	-
-	-	-	-
7500 A	6000 A	6000 A	6000 A
10000 A	6000 A	6000 A	6000 A
- 25 to 70			
20,000	20,000	20,000	20,000
10,000	10,000	10,000	10,000
1,000	1,000	1,000	1,000
1,000	1,000	1,000	1,000
By pressing test button, black dolly will come to OFF position It is recommended to test RCBO once a month	By pressing test button, black dolly will come to OFF position It is recommended to test RCBO once a month	By pressing test button, black dolly will come to OFF position It is recommended to test RCBO once a month	By pressing test button, black dolly will come to OFF position It is recommended to test RCBO once a month
Black \& blue dolly will come to OFF position	Black dolly will come to OFF position \& blue indicator will appear on front face window	Black dolly will come to OFF position \& blue indicator will appear on front face window	Black dolly will come to OFF position \& blue indicator will appear on front face window
Black dolly will come to OFF position			
Switch on black dolly			
$1-35$ sq. mm	0.75-16 sq. mm	0.75-16 sq. mm	0.75-16 sq. mm
1-25 sq. mm	$0.75-10$ sq. mm	$0.75-10$ sq. mm	$0.75-10$ sq. mm

RCBO
Type AC - 2 \& 4 modules
NFC 61-410 EN 61009-1 IEC 61009-1 2 4

As per IS 12640 (part 2) 2008, IEC 61009-1

By pressing test button, black dolly will come to OFF position
It is recommended to test RCBO once a month
Black dolly will come to OFF position \& blue indicator will appear on front face window

Black dolly will come to OFF position
Switch on black dolly
$0.75-16$ sq. mm
$0.75-10$ sq. mm

Type Hpi
EN 61009-1 IEC 61009-1

2

Type A
EN 61009-1 IEC 61009-1

4

| |
| :--- | :--- | :--- | :--- | :--- | :--- |

L7 legrand

$D X^{3}$
DX ${ }^{3}$
RCDs

Technical data

Short-circuit withstanding capacity of RCCBs (in kA)

RCD downstream	DX $^{\mathbf{3}}$ MCB upstream	
$\mathbf{2 P}$	16	10
	25	10
	40	10
	63	10
	80	10
	100	10
$\mathbf{4 P}$	25	10
	40	10
	63	10
	80	10
	100	10

Marking example :

Type A

Type AC

Type A-S

S

Type Hpi
 them?

Technical data

Nature and consequences of electrical risks

Direct and indirect contact

All electrical risks for people are the result of direct or indirect contact. What are these contacts? And how can we protect ourselves against

All the answers appear in the following section.
Electrical risks do not just concern people : these risks - especially fire affect installations as well. A 500 mA current, for example, flowing through combustible material is sufficient to ignite such material after a certain time. Every electrical installation is subject to current leakages which can vary considerably depending on such factors as the installation's condition, age, environment, etc.
These current leaks may flow through the fabric of the building (trunking, metal girders or other metal components), generating heat which in turn may lead to fire.

Direct contacts

Direct contact is caused by humans and may be due to either carelessness or clumsiness.

What is a direct contact? How can we protect ourselves?

Here are the answers...

This is when someone makes contact with a live electrical component of a device or installation.
For example :

- a person inadvertently touching a live cable.
- a child sticking a metal object into a power socket.
- using male/male extensions or unprotected test cables.

In this case only basic protection is effective

Other examples

Someone touching a live busbar in a distribution panel or cabinet, or someone touching flush-mounted electrical trunking with the end of a tool, etc. In this case basic protection plus additional protection is effective.

How can we protect ourselves?

There are two ways (independent of the neutral earthing system) of ensuring that personnel are protected against direct contact.

- Preventing access to live parts where possible.

Basic protection via physical or electrical isolation of live parts.
This protection must ensure that live parts cannot be touched, even inadvertently.
How?
By using barriers, enclosures, closed cabinets which physically or electrically isolate live parts presenting a danger to the user, shuttered sockets, or insulation.

- Additional protection

Must be provided by a 30-mA residual current device such as Lexic range of residual current devices. This protection is required in case the basic protection detailed above fails.

Technical data

Indirect contacts

Indirect contacts are independent of humans : it results from an internal hardware fault.

What is an indirect contact?

How can we protect ourselves? Here are the answers...

What is an indirect contact?

This is when a person makes contact with a metal earthed part which has accidentally been powered up following an insulation fault. This type of contact is very dangerous as, unlike direct contact, it is completely unexpected. For example, a person touching the metal frame of an electrical appliance which has defective insulation may be electrocuted through no fault of their own if the appliance is not protected.

How can we protect ourselves?

There are three possibilities :

- Preventing access to potentially dangerous metal components via class II protection.
- Good connection of all exposed conductive parts to an effective earth.
- A protective RCD according to the neutral earthing system.

A person is in danger of electrocution if the fault current raises the voltage of the accessible metal part above 50 V to earth.

Important note:

Under the Indian Electricity Rules [rules 61 (A), 71 (1) and 73 (1)], installation of an RCCB is mandatory in all installations of 5 KW and above, in all luminous tube signs and X-ray installations. The bureau of Indian standards recommends that RCCBs installed at construction sites, temporary installations, agriculture and horticulture premises, limit the residual current to 30 mA .

Residual current devices, selection and operation

The main function of a residual current device is to ensure that people are protected from any risk of electrocution. It can also ensure protection against risk of fire.
What is the nature of these risks ? What are the consequences? Here are the answers...

Risks of electrocution-

The dangerous effects of electricity depend on two factors-:

- the flowing time through the human body
- the current value

These two factors are independent and the importance of the risk varies in accordance with the level of each factor.
The dangerous current value through a human body depends on the touch voltage and touch resistance of the human body.
In practice, the current value is defined using a standard "safety" voltage of 50 V . This voltage takes into account the maximum current which can be withstood by a human being with a minimum internal electrical resistance in given conditions. It also takes into account the maximum permissible time for the current to pass through the body without dangerous physio-pathological effects.
50 V is considered as the safe limit of voltage for human body in dry condition.

How does an electrical current affect the human body?

When subject to a voltage, the human body reacts like any other receiver with a given internal resistance. An electrical current passes through the body with three serious risks :

- Locking of the muscles, or tetanisation : the muscles through which the current passes contract and remain contracted: if this includes the rib cage, breathing may be impeded.
- Action on the heart : the cardiac rhythm is completely disrupted (ventricular fibrillation).
- Thermal effects may cause varying levels of damage to body tissue, including severe burns in the case of very high currents.

Examples of electrocution by direct or indirect contact.

17 legrand

DX ${ }^{3}$
RCDs (continued)

Technical data

Effect of current on human body

The standards define the following curves, which take into account the two parameters required to assess the risk :

is : current flowing through body.
t : time taken for current to pass through body.
These curves show the various zones of effect of an alternating current on people : they derive from IEC 60479 and determine

4 main risk zones

Zone designation	Physiological effects
zone AC-1	Usually no reaction
zone AC-2	Usually no harmful physiological effects
zone AC-3	Usually no organic damage to be expected. Likelihood of cramp like muscular contractions and difficulty in breathing for durations of current- flow longer than 2 s. Reversible disturbances of formation and conduction of impulses in the heart, including atrial fibrillation and transient cardiac arrest without ventricular fibrillation increasing with current magnitude and time
zone AC-4	Increasing with magnitude and time, dangerous pathophysiological effects such as cardiac arrest, breathing arrest and serious burns may occur in addition to the effects of zone-3
zone AC-4.1	Probability of ventricular fibrillation increasing up to about 5\%
zone AC-4.2	Probability of ventricular fibrillation up to about 50\%
Zone AC-4.3 - C2	Probability of ventricular fibrillation above 50\%

* For durations of current flow below 10 ms , the limit for the body current at line b remains constant at a value of 200 mA .

A residual current device continuously measures the difference between the value of the input and the output currents. If the value is not equal to zero, this indicates a leak.
When this leak reaches the level at which the differential is set (its sensitivity), the device trips and breaks the circuit.
What are the operating principles of a residual current device?
What are the selection criteria for a residual current device? Here are the answers...

Operating principle of a residual current device

No fault present

Therefore no current is induced in coil K_{1}, and coil K_{2} is not excited. The contacts do not open. The equipment operates normally
$I_{f}=0$, thus
$l_{1}=I_{2}$
$\varnothing_{1}=\varnothing_{2}$
$\varnothing_{1}-\varnothing_{2}=0$

Insulation fault

Selecting a residual current device

First determine your requirement. This exists on two levels :
1 The need to protect against direct or indirect contacts.
2 The need to ensure protection against overloads and short-circuits. If protection against indirect contact is required, use residual current devices with a sensitivity of : 30 mA ,

$$
\begin{aligned}
& 100 \mathrm{~mA}, \\
& 300 \mathrm{~mA},
\end{aligned}
$$

The rating ($40,63 \mathrm{~A}$, etc.) is selected according to the load. If protection against direct contact is required, use residual current device with a sensitivity of 30 mA .
The sensitivity of a residual current device $I \Delta n$ is the current level at which tripping is sure to occur. To do this, the standards concerning residual current devices stipulate that tripping must occur between $\mathrm{I} \Delta \mathrm{n} / 2$ and l n .

RCDs (continued)

Technical data

Types of residual current device

There are 2 types of RCD : the AC type and the A type
Both types are produced in the "S" (discriminating) or normal versions.
They conform to Indian and International standards IS 12640,
IEC 61008 and IEC 61009 as well as European standards EN 61008 and EN 61009.

- Type A

Sensitive to residual alternating currents and residual currents with a
DC component.
Use : special applications

- if it is possible that the fault currents are not purely sinusoidal (rectifier bridge, etc.)
- Type AC

Sensitive to residual alternating currents
Use : standard applications

- Type S S

Delayed trip for discrimination with other residual current devices. Use : for discrimination with a downstream device.

- Type Hpi $\sim \sim \mathrm{Hpi} \underset{\mathcal{X}_{-25}^{*}}{\sim}$
- Enhanced immunity to unwanted tripping in environments with disturbances. eg. diesels, computers, printers, etc.
- Detects faults with DC components eg. thyristors, trio etc.

Residual current circuit-breaker with or without overload

 protection? Which do I choose?Choose a residual current circuit-breaker (RCCB) if you do not need to protect against overload and short circuits (caution! an RCCB must be connected to some form of line protection device : either a circuitbreaker or a fuse).
Choose a residual current circuit-breaker with overload and short circuit protection (RCBO) if this type of protection is not available.

Residual current circuit-breakers without overload and short circuit protection (RCCB)

These provide three functions : fault current detection, measurement and cut-off : protection against overloads and shortcircuits : and isolation of an installation.
Residual current circuit-breakers are governed by standards IS 12640 (part 2), IEC 61009-1.

The "test" function

A residual current device is a safety device, and it is therefore vital that it is regularly tested. This function is therefore required by the standard governing residual current protective devices, and ensures correct operation. All Lexic RCDs are equipped with this function.

Note: We offer Type AC, Type A-S and Type Hpi RCDs

Compatibility MCBs/add-on modules

Breaking capacity	Number of poles	Add-on module for 1.5 module/pole MCBs
16 kA	2P, 4P	$\mathrm{ln} \geq 80 \mathrm{~A}$
25 kA	4P	In $\geq 32 \mathrm{~A}$
	2 P	$\mathrm{ln} \geq 40 \mathrm{~A}$
	4 P	In $\geq 12,5 \mathrm{~A}$
	2P	In $\geq 32 \mathrm{~A}$
50 kA	2P, 4P	All range

L7 legrand

STOP\&GO automatic resetting for DX ${ }^{3}$

Performance of MCBs and auxiliaries

Operating principle

Temporarily electrical disturbances and other external events can cause unwanted tripping of different devices protecting electrical installation

STOP\&GO verifies automatically the state of the installation, before resetting and launches a visual and close a contact in case of permanent fault detection (short-circuit or residual current)

After verifying the state of the installation, STOP\&GO automatic resets the associated protection device in order to immediatly re-establish power supply and avoid unwanted consequences

STOP\&GO does not protect the installation against lightning strikes For an efficient protection against lightning, use voltage surge protectors
The Autotest version is specially suitable for installations equipped with residual current protection devices (RCD's and RCBOs)
STOP\&GO periodically does an automatic test of the functionning of residual current protection devices. The manual test is no longer needed

Installation without STOP\&GO

Mains fault due to temporarily electrical disturbances
Electrical devices are not powered anymore

Installation with STOP\&GO

STOP\&GO automatic resets the associated protection device in order to immediatly re-establish power supply

Performance of MCBs and auxiliaries

Electric wiring diagram

Cat.No 406286

Tripping time:

Limit values of breaking time and non actuation time at a voltage

	$\mathbf{2 5 5} \mathbf{V}$	$\mathbf{2 7 5} \mathbf{V}$	$\mathbf{3 0 0} \mathbf{V}$	$\mathbf{3 5 0} \mathbf{V}$	$\mathbf{4 0 0} \mathbf{~ V}$
Breaking time	No tripping	15 Sec	5 Sec	0.75 Sec	0.20 Sec
		1 Sec	0.25 Sec	0.07 Sec	

Combinations with auxiliaries:

Protection of DC circuits

Protection of DC circuits

DX 3000 and DX 310000 MCBs (1P/2P/3P/4P - In ≤ 63 A) designed for use in 230/400 V \sim supplies, can also be used in DC circuits In this case, the following deratings and precautions must be taken into account

1 - Protection against short-circuits

Max. magnetic tripping threshold: multiplied by 1.4
Example: For a C curve MCB for which the AC tripping threshold is between 5 and 10 In , the DC tripping threshold will be between 7 and 14 In

2 - Protection against overloads

The time/current thermal tripping curve is the same as for AC

3 - Operating voltage

Max. operating voltage: 80 V per pole (60 V for single-pole + N MCBs) For voltages higher than this value, several poles must be wired in series

4 - Breaking capacity

4000 A for a single pole MCB at max. voltage (80 V =. per pole)
For other voltages, the breaking capacities are as follows:

DX ${ }^{3} 6000$		voltage	single-pole	2P	3P	4P
Acc. to IEC 60947.2	Icu	$\leq 48 \mathrm{~V}$	6 kA	6 kA		
		110 V		6 kA	6 kA	
		230 V				10 kA
	Ics ${ }^{(1)}$	$\leq 48 \mathrm{~V}$	100 \%	100 \%		
		110 V		100 \%	100 \%	
		230 V				100 \%

DX $^{3} \mathbf{1 0 0 0 0}$	voltage	single-pole	$\mathbf{2 P}$	$\mathbf{3 P}$	4P	
Acc. to IEC 60947.2	Icu	$\leq 48 \mathrm{~V}$	10 kA	10 kA		
			10 kA	10 kA		
					15 kA	
	$\boldsymbol{I c s}^{(1)}$	$\leq 48 \mathrm{~V}$	100%	100%		
			100%	100%		
					100%	

1: As a \% of Icu

5 - Distribution of breaking poles

To choose the MCB and determine the pole distribution necessary for breaking on each of the polarities, it is necessary to know how the installation is earthed

- Supply with one polarity earthed:

Place all the poles necessary for breaking on the other polarity If isolation is required, an additional pole must be added on the earthed polarity
MCB

1: Only if isolation required

L7legrand

Protection of DC circuits

Protection of DC circuits

Example: circuit earthed via the negative polarity $/ \mathrm{U}=110 \mathrm{~V}=\mathrm{I} / \mathrm{lsc}=$ $10 \mathrm{kA} / \mathrm{In}=32 \mathrm{~A}$
Protect the positive polarity using an MCB capable of breaking 10 kA at 110 V ($\mathrm{DX}^{3} 100002 \mathrm{P} 32 \mathrm{~A}$ with 2 poles on the positive polarity) For isolation, use a DX ${ }^{3} 100003 \mathrm{P} 32 \mathrm{~A}$ with 2 poles on the positive polarity and one pole on the negative polarity

- Network earthed via a middle point:

Place on each polarity the number of poles necessary for max. Isc breaking at half voltage

1: MCB (U/2-Isc max.)
Example: circuit earthed via a middle point $/ \mathrm{U}=230 \mathrm{~V}=/ \mathrm{Isxc}=6 \mathrm{kA}$ / $\mathrm{In}=10 \mathrm{~A}$
Protect each polarity using an MCB capable of breaking 6 kA at half voltage, i.e. 115 V

DX ${ }^{3} 6000$		voltage	single-pole	2P	3P	4P
Acc. to IEC 60947.2	Icu	$\leq 48 \mathrm{~V}$	6 kA	6 kA		
		110 V		6 kA	6 kA	
		230 V				10 kA

- Isolated earth supply:

Distribute the poles necessary for breaking over the 2 polarities to provide protection in the event of a double earth fault (particularly if there are a number of circuits in parallel)

1: MCB (U-Isc max.)

Example: isolated earth circuit / $\mathrm{U}=48 \mathrm{~V}=/ \mathrm{Isc}=4,5 \mathrm{kA} / \mathrm{In}=40 \mathrm{~A}$ Protect the installation with an MCB capable of breaking 4.5 kA at 48 V and protect each polarity

DX $^{3} \mathbf{6 0 0 0}$	voltage	single-pole	2P	3P	4P	
Acc. to IEC 60947.2	Icu	$\leq 48 \mathrm{~V}$	6 kA	6 kA		
			6 kA	6 kA		
					10 kA	

Programmable time switches

 with analogue and digital dial
Diagrams

Cat.No 412631

Cat.Nos 4126 54/34/29
Cat.Nos 4126 57/41/30

Cat.Nos 4127 90/94

Cat.Nos 4128 12/13/14

Output closing and breaking times are calculated based on the date, the actual time when the device was switched and on geographical coordinates of the actual location

AlphaRex ${ }^{3}$ digital time switches

Technical specifications

Type	$\begin{gathered} \text { AlphaRex }{ }^{3} \\ \text { D21 } \\ \hline \end{gathered}$	$\begin{gathered} \text { AlphaRex }{ }^{3} \\ \text { D22 } \\ \hline \end{gathered}$	$\begin{gathered} \text { AlphaRex }{ }^{3} \\ \text { D21s } \\ \hline \end{gathered}$	AlphaRex ${ }^{3}$ D21 astro	AlphaRex ${ }^{3}$ D22 astro	$\begin{gathered} \text { AlphaRex }{ }^{3} \\ \text { DY21 } \\ \hline \end{gathered}$	$\begin{gathered} \text { AlphaRex }{ }^{3} \\ \text { DY22 } \\ \hline \end{gathered}$
Nominal voltage $230 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	412631	412641	412634	412654	412657	412629	412630
Number of modules of $\mathbf{1 7 . 5} \mathbf{~ m m}$ each	2	2	2	2	2	2	2
Number of channels	1	2	1	1	2	1	2
Switch output	1 changeover contact	2 changeover contacts	1 changeover contact	1 changeover contact	2 changeover contacts	1 changeover contact	2 changeover contacts
Zero-crossing switching	\checkmark						
Switching capacity							
- Ohmic $250 \mathrm{~V} \sim \cos \varphi=1$	16 A2	16 A~	$16 \mathrm{~A} \sim$	16 A~	16 A~	16 A~	16 A~
- Inductive $230 \mathrm{~V} \sim \cos \varphi=0.6$	$10 \mathrm{~A} \sim$						
- Incandescent lamp load	2000 W						
- Fluorescent lamp, series compensated	2000 VA						
- Energy-saving lamp	1000 W						
Programs ${ }^{1)}$	56	28 per channel	56	56	28 per channel	84	84 per channel
Control input with switch-off delay 0 s to 23 h 59 min 59 s			\checkmark	\checkmark		\checkmark	
Cycle function (pulse time) min. 1s, max. 1 h 59 min 59 s	\checkmark						
Clock precision (typical)	~ 0.1 s/day ${ }^{2}$						
Running reserve	5 years						
Shortest switching step	1 s						
Operating temperature	-20 to $+55^{\circ} \mathrm{C}$						
Degree of protection	IP20						

Connection diagram
AlphaRex ${ }^{3}$ D21
AlphaRex ${ }^{3}$ D22
AlphaRex ${ }^{3}$ D22 astro
AlphaRex ${ }^{3}$ DY22

Functions

Select menu, go back while in menu
Press >1 sec. $=$ operating display
OK
Confirm the selection or accept the parameterSelect the menu item or set the parameter;
for 2-channel time switches, can be used
to select the channel (channel 1 - channel 2)

Brief description of programming functions

Text guidance

Guides the user through programming and setup with plain text prompts. Each step can be read on the screen, and the function that is currently active flashes. An integrated display and button light makes operation easy even in poorly lit environments.

Set language

The language selection function can be accessed using the "MENU" button. The language is set to English by default.
The following languages can be selected: German, English, French, Italian, Spanish, Dutch, Portuguese*, Swedish*, Norwegian*, Finnish*, Danish*, Polish*, Czech*, Russian*, Turkish*.
*) Excluding AstroRex DY64

Time, date, summer time (daylight saving time)

The time switch is preset at the factory to the current time and date. The time can be changed by selecting "MENU" + "SET".

AlphaRex ${ }^{3}$ D21s
AlphaRex ${ }^{3}$ D21 astro
AlphaRex ${ }^{3}$ DY21

Reset

Simultaneously pressing all buttons for more than 2 seconds deletes all data. Language, date/time, summer time (daylight saving time) and switch times must be set again.

Data key

If the supply voltage is switched on, the "KEY - READ - WRITE" menu item is automatically opened when a data key is inserted. "WRITE": Program data is written from the time switch to the key. Caution: Any data present on the key will be overwritten. "READ": Program data is written from the key to the time switch; any switching programs on the time switch are overwritten. Only one master switching program, which consists of multiple switching programs, can be saved on the time switch or on the key at a time. If the supply voltage is not connected, the "KEY - READ - WRITE" menu item is not automatically opened when a data key is inserted. The "KEY" function can still be selected from the menu even if the supply voltage is not connected.

PC programming

In addition to the easy, text-guided programming directly on the time switch, switching programs can also be created on a PC with the software program from Legrand and transferred to the time switch using a data key. A data transfer device (Cat.No : 412873) is required to transfer switching programs created on a PC to the data key. The device is connected to the PC using the USB plug. In addition to the data transfer device, we also offer a CD with the software and the necessary drivers. PC system requirements: USB port; Windows ${ }^{\circledR}$ XP, Windows ${ }^{\circledR}$ Vista, Windows ${ }^{\circledR} 7$; approx. 40 MB of free memory.

L7 legrand

AlphaRex ${ }^{3}$ digital time switches

Brief description of programming functions

Weekly programs

To create a weekly program, select "MENU", "PROGRAM", and then "CREATE" to easily enter programs which are repeated on a weekly basis. A weekly program consists of a switch-on/switch-off times and days which are assigned as "switched-on" or "switched-off". The following predefined blocks can be selected: "MONDAY - SUNDAY", "MONDAY - FRIDAY" ${ }^{1)}$ or "SATURDAY - SUNDAY", "; the assigned days of the week are fixed. The switch-on/switch-off times must be entered. The user can also set custom day blocks. By selecting "CUSTOM", switch times can be freely assigned to any days of the week. This option also allows the user to set switch times at midnight.
${ }^{1)}$ Excluding AlphaRex ${ }^{3}$ DY, AstroRex DY64

Yearly programs [AlphaRex ${ }^{3}$ DY21, AlphaRex ${ }^{3}$ DY22]

This menu item allows the user to enter (additional) yearly programs, which are only executed within a defined validity period. They can overlap with one another and with the weekly programs on the same channel based on an "OR" connective. The validity period is defined by entering the start date (at 00:00:00) and the end date (at 24:00:00). The start date must be entered before the end date. With the "EVERY YEAR" option, the additional switch times have the same validity period each year (Christmas, national holidays, birthdays, etc.) Select the "ONCE" option when additional switch times are needed within a validity period (e.g. during holidays), but the start/end dates of the holiday period change from year to year.

Special programs (priority program) [AlphaRex ${ }^{3}$ DY21, AlphaRex ${ }^{3}$ DY22]

Weekly and yearly programs on the same channel are not executed during the validity period of a special program. However, other special programs can be executed during the validity period. Different special programs can overlap with each other based on an "OR" connective. With the "EVERY YEAR" option, the additional switch times have the same validity period each year (Christmas, national holidays, birthdays, etc.). Select the "ONCE" option when additional switch times are needed within a validity period (e.g. during holidays), but the start/end dates of the holiday period change from year to year. Additional options include "MON TO SUN"/"CUSTOM": the respective channel only switches according to the special program; "PROG ON"/"PROG OFF": the respective channel is switched on/off during this time period.

Basic functions for "astro"

Location (astro) [AlphaRex ${ }^{3}$ D21 astro, AlphaRex ${ }^{3}$ D22 astro, AlphaRex ${ }^{3}$ DY21, AlphaRex ${ }^{3}$ DY22]

The sunrise/sunset times, which change daily, are calculated for the location programmed in the AlphaRex. The unit is delivered with the location set to "GERMANY - SOEST" by default. Enter the actual location for optimal operation. This can be done in two ways. Select "MENU", "SET" and "ASTRO" to access the two options "LOCATION" and "COORDINATES". "LOCATION": With this menu item, the user can select the country and city which is closest to the site of operation. "COORDINATES": Alternatively, the user can select this menu item to set the geographical coordinates of the location. The longitude and latitude values are entered in degrees or degrees and arcminutes ${ }^{2)}$ (precision can be set in expert mode). Information on coordinates and time zones can be found in the time zone map included with every time switch.

Offset

By selecting "MENU", "SET", "ASTRO" and "OFFSET", time differentials can be set for the calculated switch times. This can be done in two ways: time offset or angle offset.
In time offset, a time differential can be entered to shift the switch time by up to $+/-120$ min relative to the sunrise/sunset times.
In angle offset ${ }^{2}$, a value can be entered in degrees and arcminutes to shift the switch time by up to $+/-12^{\circ} 00^{\prime}$ relative to the sunrise/sunset times. The time differentials are set separately for sunrise and sunset using the menu items "SUNSET" (opens the screen for setting the sunset offset) and "SUNRISE" (opens the screen for setting the sunrise offset).

Example:
For a time differential of +30 min , the time switch switches 30 min . after sunrise and 30 min . after sunset
For a time differential of -30 min , the time switch switches 30 min . before sunrise and 30 min . before sunset.

Note:
If the offset is set in degrees, the time switch always switches at points when the brightness is the same, despite the fact that the twilight duration changes over the course of the year. Sunrise and sunset correspond to -50 ' for the centre of the sun (the edge of the sun is visible on the horizon).

Offset correction function ${ }^{2)}$

Select "MENU", "SET", "ASTRO" and "CORRECTION" to set a time correction for the 6-month periods surrounding summer and winter. The time correction is set to 0 min . by default and can be set from 1 min . up to 30 min . The time correction for sunset is entered in the "SUNSET" menu item. The time correction for sunrise is set in the "SUNRISE" menu item. The correction function overlaps with the calculated astronomical switch times, including the offset settings.

Example:

Setting a time correction extends the daily switched-on time by up to 60 min . in the middle of the six winter months (switches off up to 30 min. later in the morning and switches on up to 30 min . earlier in the evening). In the middle of the six summer months, the time correction reduces the daily switched-on time by up to 60 min . (switches off up to 30 min . earlier in the morning and switches on up to 30 min . later in the evening). The time correction varies continuously between the two max. values during the rest of the year.

Basic settings using a PC and day key

All of the basic settings described above, with the exception of the current time and date, can be set up using the AlphaSoft software from Legrand and imported to the time switch using the data key. ${ }^{2)}$ Excluding AstroRex DY64

AlphaRex ${ }^{3}$ digital time switches

Additional functions

Relay function

The relay state can be changed by selecting "MENU" and "FUNCTIONS". The relay is preset to the "AUTO" function; the time switch switches at the programmed times. The following can also be selected: "ALWAYS ON", "ALWAYS OFF" and "EXTRA". If "EXTRA" is selected, the switching status specified by the program is inverted. The time switch resumes switching according to the programmed switch times after the next switch command.

Holiday program

In holiday program, the holiday period is set with a start and an end date. It can be activated with the "ACTIVE" program item and deactivated with "PASSIVE". If the holiday program is activated, the time switch does not carry out any programmed switch commands during this time period. Instead, it remains "ALWAYS OFF" or "ALWAYS ON" during the holiday period, as requested. When the holiday period has ended, the time switch resumes switching according to the programmed switch times.

1 h test

The " 1 h TEST" function can be used for a switching simulation. If " 1 h TEST" is activated, the switch outputs are switched for one hour. After the time has ended, the time switch resumes switching according to the programmed switch times.

PIN code

Input and programming can be locked using a four-digit "PIN CODE". The time switch can be unlocked using the "PIN CODE". The time switch can also be unlocked using the "RESET" function, which also deletes all settings and programs.

Operating hours counter

This function displays the time for which the relay has been switched on and the date of the last reset. Counting range: $65,535 \mathrm{~h}$.

Contrast adjustment

This function allows the user to adjust the display contrast.

Expert mode*

Expert mode is activated by selecting "OPTIONS" and "EXPERT". After expert mode is activated, the following additional functions can be used: control input "extra" ${ }^{1)}$, control input "out" ${ }^{11}$, cycle function, channel-switching function (2-channel time switches), mains-synchronous operation, offset correction function ${ }^{2)}$, geographical coordinates in degrees and arcminutes ${ }^{2)}$.
${ }^{\text {1) }}$ AlphaRex ${ }^{3}$ D21s, AlphaRex ${ }^{3}$ D21 astro, AlphaRex ${ }^{3}$ DY21 ${ }^{2)}$ AlphaRex ${ }^{3}$ astro, AlphaRex ${ }^{3}$ DY

Control input with switch-off delay

Adjustable switch-off delay via control input. The control input enables an additional switching of the relay, parallel to the switching program. The switch-off delay can be set from 0 s to 23 h 59 min 59 s . The switch-off delay begins as soon as the voltage is removed from the control input.

Control input "extra"*

Override of switching state via control input. If the "EXTRA" function is activated, the switching state specified by the program is inverted. The time switch resumes switching according to the programmed switch times after the next switch command. The "EXTRA" function is ended prematurely if the button is pressed again or if a pulse is received at the control input.

Control input "off"*

Switch off via control input. Activating the "OFF" function causes the time switch to be switched off via the control input. The "OFF" function is ended if the button is pressed again or if a pulse is received at the control input. The time switch resumes switching on/off according to the programmed switch times.

Pulse function

Programmable with precision to the second.

Cycle function

Function for cyclical switching. With this function, the time switch is switched on once within a defined time period and for a defined duration. The cycle time can be set between 2 s and 2 h . The switch-on time can be set between 1 s and 1 h 59 min 59 s .

Random function

If the random function is activated, set switch times are randomly shifted within a range of $+/-15$ minutes.

Channel-switching function*

With 2-channel time switches, this function can be activated so that the time switch regularly switches between the outputs assigned to the channels, in order to protect connected devices (for example lights/lamps) or so that two devices can be used simultaneously.
The channel-switching function is activated by selecting "MENU", "OPTIONS" and "CHANNEL $1<>2$ ". The time switch switches between the outputs according to whether the menu item "DAILY" (once per day at 12:00 p.m.) or "WEEKLY" (once per week on Sunday at 12:00 p.m.) is selected.

Mains-synchronous operation

Mains-synchronised clock precision. By activating the "SYNC" function and then "ACTIVE", the quartz-controlled time switch becomes a synchronous time switch.
*) Excluding AstroRex DY64

L7 legrand

Rex Analogue Time Switches and CX ${ }^{3}$ switches \& indicators

Type	$\begin{gathered} \text { MicroRex } \\ \text { T31 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MicroRex } \\ \text { QT31 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MicroRex } \\ \text { W31 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MicroRex } \\ \text { QT11 } \\ \hline \end{gathered}$	MicroRex QW11
Number of modules of 17.5 mm each	3	1			
Number of channels	1	1	1	1	1
Drive type	synchronous	quartz	synchronous	quartz	quartz
Switching dial	24 h	24 h	7 days	24 h	7 days
Running reserve	none	100 h	none	100 h	100 h
Switching increment	15 min	15 min	2 h	15 min	2 h
Shortest switching step	30 min	30 min	4 h	15 min	2 h
Switching step	+/-5 min	+/-5 min	+/-30 min	+/-5 min	+/-30 min
Clock precision	mains	2.5 s/day	mains	2.5 s/day	2.5 s/day
	synchronised			synchronised	
Switching capacity					
- Ohmic $230 \mathrm{~V} \sim \cos \varphi=1$	16 A~				
- Incandescent lamp $230 \mathrm{~V} \sim$	$4 \mathrm{~A} \sim$				
- Inductive $230 \mathrm{~V} \sim \cos \varphi=0.6$	$12 \mathrm{~A} \sim$				
Switch output	1 changeover contact	1 changeover contact	1 changeover contact	1 normally open contact	1 normally open contact
Operating temperature	-10 to $+55^{\circ} \mathrm{C}$				
Degree of protection	IP20				

Connection diagram

MicroRex - 3 modules
MicroRex - 1 module

Wall bracket - $\mathbf{3}$ modules

3-module MicroRex units can be surface mounted using the wall bracket. A termina cover is included with
delivery.

Standard light sensitive switch (Cat.No 4126 23)
Switch "ON" and "OFF" defined by a light level threshold

CX ${ }^{3}$ Changeover switches

Power dissipation per role : 1.5 w
Overvoltage category: 4 kV
Dielectric withstand: $2 \mathrm{kV} \sim$
Degree of pollution : 2

CX ${ }^{3}$ Push-buttons and control switches

Electrical endurance : 30000 cycles AC12
$(\cos \varphi=0.9)$ IEC 60947-5-1
Electrical endurance under fluorescent loads : 30000 cycles according to IEC 60669-1

CX ${ }^{3}$ LED indicaotrs

Equipped with non replaceable LED lamps
LED life : 100000 h
LED consumption :

- 0.17 W under $230 \mathrm{~V} \sim$
- 0.11 W under 24 V ~

Power contactors CX^{3}

Technical characteristics

- Rated impulse withstand voltage (Uimp): 4 kV
- Mechanical endurance (no. of operating cycles): 10^{6} cycles
- Operating temperatures: $-25^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
- Storage temperatures: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Contactor protection against short circuits according to standard EN 61095, conditional short-circuit current:

- Iq = 6 kA for 16 to 25 A contactors
$-\mathrm{lq}=3 \mathrm{kA}$ for 40 to 63 A contactors
Circuit breaker or gG fuse rated:

$$
\begin{array}{ll}
\bullet \leq 16 \text { A for } 16 \text { A rating } & \bullet \leq 40 \mathrm{~A} \text { for } 40 \mathrm{~A} \text { rating } \\
\cdot \leq 25 \text { A for } 25 \text { A rating } & \bullet \leq 63 \text { f for } 63 \text { A rating }
\end{array}
$$

- Consumption of a contactor control coil

	16 A and 25 A power contactors				
Coil voltage	$24 \mathrm{~V} \sim$		$230 \mathrm{~V} \sim$ low noise	$230 \mathrm{~V} \sim$	
Current	16 A and 25 A	25 A	25 A	16 A and 25 A	16 A and 25 A
Type of contact	$\mathrm{NC}+\mathrm{NO}$ 2 NO	4 NO	2 NO	$\mathrm{NC}+\mathrm{NO}$ NO 2 NC	$2 \mathrm{NC}+2 \mathrm{NO}$ 4 NO 4 NC
Dimensions	1 mod.	2 mod.	1 mod.	1 mod.	2 mod.
Holding current	200 mA	300 mA	12 mA	20 mA	20 mA
Inrush current	970 mA	2500 mA	60 mA	90 mA	200 mA

	40 A and 63 A power contactors			
Coil voltage	$24 \mathrm{~V} \mathrm{\sim}$		$230 \mathrm{~V} \mathrm{\sim}$	
Current	40 A and 63 A			
Type of contact	2 NO	4 NO	2 NO 2 NC	3 NO 4 NO 4 NC
Dimensions	2 mod.	3 mod.	2 mod.	3 mod.
Holding current	250 mA	270 mA	15 mA	30 mA
Inrush current	1750 mA	1500 mA	150 mA	200 mA

- Recommendations

Insert a spacing module (Cat.No 406307 p. 40):

- every two contactors when the ambient temperature is below $40^{\circ} \mathrm{C}$ - every contactor when the ambient temperature is between

40 and $60^{\circ} \mathrm{C}$

Contactor rating	$\mathbf{4 0}{ }^{\circ} \mathbf{C}$	$\mathbf{5 0}^{\circ} \mathbf{C}$	$\mathbf{6 0}^{\circ} \mathbf{C}$
$\mathbf{I e}=\mathbf{1 6} \mathbf{A}$	16 A	14 A	12 A
$\mathbf{I e}=\mathbf{2 5} \mathbf{A}$	25 A	22 A	20 A
$\mathbf{l e}=\mathbf{4 0} \mathbf{A}$	40 A	36 A	32 A
$\mathbf{l e}=\mathbf{6 3} \mathbf{~ A}$	63 A	57 A	50 A

- Max. connection cross-section in mm ${ }^{\mathbf{2}}$

Conductor type	Ratings $\leq \mathbf{2 5} \mathbf{A}$	Ratings $\mathbf{4 0}$ \& $\mathbf{6 3} \mathbf{~ A}$
Rigid	6^{2} or 2×2.5^{2}	25^{2} or 2×10^{2}
Flexible	6^{2} or 2×2.5^{2}	25^{2} or 2×10^{2}
Flexible with single end cap	6^{2}	16^{2}
Flexible with double end cap	2×4^{2}	2×16^{2}

Contactor selection charts

- Incandescent lamps

Tungsten and halogen filaments $230 \mathrm{~V} \sim$												
Nominal wattage	40 W		60 W	75 W		100 W	150 W		200 W	500 W		1000 W
16 A	45		30	24		19	13		10	4		2
25 A	60		48	38		30	20		15	6		3
40 A	96		77	61		48	32		24	10		5
63 A	154		123	97		77	51		38	15		8
ELV halogen bulbs with ferromagnetic ballast							ELV halogen bulbs with electronic ballast					
Nominal wattage	20 W	35 W	50 W	75 W	100 W	W 150 W	20 W	35 W	50 W	75 W	100 W	W 150 W
16 A	32	20	15	12	9	6	60	40	28	18	14	9
25 A	52	30	24	16	12	8	80	50	40	26	20	13
40 A	68	39	31	21	16	10	112	70	56	36	28	18
63 A	88	51	41	27	20	14	157	98	78	51	39	25

Contactor selection charts (continued)

- Fluorescent tubes with ferromagnetic ballast

	Single parallel compensated fluorescent					Double series compensated fluorescent				
Nominal wattage	18 W	20 W	36 W	58 W	115 W	$\begin{gathered} 2 x \\ 20 \mathrm{~W} \end{gathered}$	$\begin{gathered} 2 \mathrm{x} \\ 36 \mathrm{~W} \end{gathered}$	$\begin{gathered} 2 x \\ 40 \mathrm{~W} \end{gathered}$	$\begin{gathered} 2 \mathrm{x} \\ 58 \mathrm{~W} \end{gathered}$	$\begin{gathered} 2 x \\ 140 \mathrm{~W} \end{gathered}$
16 A	24	24	16	11	5	30	24	22	15	6
25 A	33	30	25	17	9	45	38	35	24	10
40 A	43	39	33	22	12	68	57	53	36	15
63 A	56	51	42	29	15	101	86	79	54	23
Quadruple series compensated fluorescent						Compact fluorescent with built-in starter				
Nominal wattage	$4 \times 18 \mathrm{~W}$					7 W	10 W		18 W	26 W
16 A	16					50	40		28	19
25 A	24					60	50		42	28
40 A	36					78	65		55	36
63 A	54					101	85		71	47

- Fluorescent tubes with electronic ballast

Single fluorescent						Double fluorescent			
Nominal wattage	$\mathbf{1 8} \mathbf{W}$	$\mathbf{3 0} \mathbf{W}$	$\mathbf{3 6} \mathbf{W}$	$\mathbf{5 8} \mathbf{W}$	$\mathbf{2 \times 1 8} \mathbf{~}$	$\mathbf{2 \times 3 6} \mathbf{~ W}$	$\mathbf{2 \times 5 8} \mathbf{~ W}$		
$\mathbf{1 6} \mathbf{A}$	72	42	36	22	36	20	12		
$\mathbf{2 5} \mathbf{A}$	110	68	58	36	56	30	19		
$\mathbf{4 0} \mathbf{A}$	165	102	87	54	84	45	29		
$\mathbf{6 3} \mathbf{A}$	248	153	131	81	126	68	43		

	Triple fluorescent (series compensated)		Quadruple fluorescent (series compensated)	
Nominal wattage	$\mathbf{3 \times 1 4} \mathbf{~ W}$	$\mathbf{3 \times 1 8} \mathbf{~ W}$	$\mathbf{4 \times 1 4} \mathbf{~ W}$	$\mathbf{4 \times 1 8} \mathbf{~ W}$
$\mathbf{1 6 ~ A}$	34	26	26	20
$\mathbf{2 5} \mathbf{~ A}$	46	38	37	28
$\mathbf{4 0} \mathbf{~ A}$	62	51	52	39
$\mathbf{6 3} \mathbf{A}$	84	69	73	55

Compact fluorescent with built-in electronic power supply					
Nominal wattage	$\mathbf{7} \mathbf{~ W}$	$\mathbf{1 1 ~ W}$	$\mathbf{1 5} \mathbf{~ W}$	$\mathbf{2 0} \mathbf{~ W}$	$\mathbf{2 3} \mathbf{~ W}$
$\mathbf{1 6 ~ A}$	120	80	64	50	43
25 A	200	125	90	70	60
40 A	280	175	126	98	84
63 A	392	245	176	137	118

- Discharge lamps with compensation

Metal halogenide								Low pressure sodium vapour					
Nominal wattage	35 W	70 W 1	100 W	150		250	W 400 W	18 W	35 W	55 W	90 W	W 135 W	180 W
16 A	10	6	5	3		2	1	12	6	5	3	2	2
25 A	15	9	7	5		3	2	20	10	7	5	3	3
40 A	23	14	11	8		5	3	30	15	11	8	5	5
63 A	34	20	16	11		7	5	45	23	16	11	7	7
High pressure sodium vapour								High pressure mercury vapour					
Nominal wattage	70 W	150 W		W W		0 W	1000 W	50 W	80 W	125	W	250 W	400 W
16 A	8	7		5		3	1	11	8		6	3	2
25 A	10	9		6		4	2	15	10		8	4	3
40 A	15	14		9		6	3	21	14		1	6	4
63 A	23	20		14		9	5	29	20		6	8	6

High pressure mixed				
Nominal wattage	$\mathbf{1 0 0} \mathbf{~ W}$	$\mathbf{1 6 0} \mathbf{~ W}$	$\mathbf{2 5 0} \mathbf{~ W}$	$\mathbf{4 0 0} \mathbf{~ W}$
$\mathbf{1 6 ~ A}$	9	6	4	2
$\mathbf{2 5} \mathbf{A}$	11	7	5	3
$\mathbf{4 0 ~ A}$	14	9	7	4
$\mathbf{6 3 ~ A}$	19	12	8	5

L7legrand

EMDX ${ }^{3}$ electrical energy meters

Technical characteristics

Single-phase meters Cat.Nos 0046 70/77
LCD display: 7 digits
Resolution: 0.1 kWh
Maximum indication: 99999.9 kWh
Metrological LED: 1 Wh/pulse (Cat.No 004670 : $0.5 \mathrm{~Wh} /$ pulse)
Accuracy (EN 62053-21): class 1
Reference voltage Un: 230 V -240 V
Reference frequency: $50-60 \mathrm{~Hz}$
Pulse output: 1 pulse/10 Wh
(Cat.No 0046 70: 2 pulse/Wh)

Three-phase meters Cat.Nos 0046 80/84

LCD display: 8 digits
Resolution: 0.01 kWh
Maximum indication: $99999.99 \mathrm{kWh}^{(1)}$
Metrological LED: 0.1 Wh/pulse or $1 \mathrm{~Wh} /$ pulse
Active energy accuracy (EN 62053-21): class 1
Reactive energy accuracy (EN 62053-23): class 2
Reference voltage Un:
Single-phase: 230-240 V

- Three-phase: $230(400)-240(415) \mathrm{V}$

Operating limit range (EN 62053-21, EN 62053-23):

- Single-phase: 110 to 254 V
- Three-phase: 110(190) to 254(440) V

Pulse output: 1 pulse/10 Wh

Cat.Nos		004670	004677	004680	004684
Number of modules		1	2	4	4
Connection	Direct	-	-	-	
	Via a current transformer				-
	Single-phase	-	-		\bullet
	Three-phase			-	\bullet
Max. current		32 A	63 A	63 A	5 A (CT)
Metering and measurement	Total active energy	-	-	-	-
	Total reactive energy			-	-
	Partial active energy (reset)		\bullet	\bullet	-
	Partial reactive energy (reset)			-	\bullet
	Active power		\bullet	-	-
	Reactive power			\bullet	-
	Apparent power			\bullet	-
	Current		-	-	-
	Voltage		-	\bullet	\bullet
	Frequency		-	-	-
	Power factor		\bullet	-	\bullet
	Time-of-use		-		
	Average active power			\bullet	-
	Max. average active power value			-	-
	Dual tariff				
Communication	Pulse output	\bullet			-
	RS 485 interface		-	-	-
MID compliant					
Operating conditions	Reference temperature	$23^{\circ} \mathrm{C} \pm 2{ }^{\circ} \mathrm{C}$			
	Operating temperature	-20 to $+55^{\circ} \mathrm{C}$	-10 to $+45^{\circ} \mathrm{C}$	-5 to $+55^{\circ} \mathrm{C}$	
	Storage temperature	-40 to $+70^{\circ} \mathrm{C}$	-25 to $+70^{\circ} \mathrm{C}$	-25 to $+70^{\circ} \mathrm{C}$	
	Consumption	$\leq 8 \mathrm{VA}$		≤ 4 VA per phase	≤ 1 VA per phase
	Heat dissipation	$\leq 6.5 \mathrm{~W}$		$\leq 6 \mathrm{~W}$	$\leq 4 \mathrm{~W}$

Interfacing with IP communication network

[^4]
EMDX ${ }^{3}$ multi-function measuring units

L7 legrand

Surge Protective Devices (SPDs)

protection against transient overvoltages

Protection against lightning and overvoltages

Protection against the effects of lightning is essentially based on: - Protecting buildings using a lightning protection system (LPS or lightning conductors) to catch lightning strikes and to drive the lightning current to earth.

- The use of surge protective devices (SPDs) to protect equipment. - The design of the earthing system (passive protection of the installation).
Throughout the world, there are millions of lightning strikes each day in the summer (up to 1000 lightning strikes/second). Lightning is responsible for 25% to 40% of all damage to equipment. When added to industrial overvoltages (switching overvoltages due to the operation of internal equipment), they account for more than 60% of all electrical damages, which can be prevented by installing SPDs (according to the country and type of installation - source: insurance companies). In some countries, and depending on the end use of the building, national regulations may always stipulate the installation of SPDs (for example, Germany, Austria, Norway, etc.). If there are no specific national regulations, SPDs are usually specified by national installation standards (based on HD/IEC 60364 international installation standards) and EN/IEC 62305 standards.

External lightning protection system (LPS) or lightning conductors: protection of buildings (EN/IEC 62305)
An external lightning protection system (LPS) protects buildings against direct lightning strikes. It is generally based on the use of lightning conductors (single rod, with sparkover device, meshed cage etc.) and/or the metallic structure of the building.
If there is an LPS or if a lightning risk assessment has been carried out in accordance with EN/IEC 62305 standards, SPDs are generally required in the main distribution board (T1 SPDs) and distribution boards (T2 SPDs).
Determination of the SPDs in the main distribution board in accordance with EN/IEC 62305 and TS/IEC 61643-12 (if there is insufficient information available):

LPL': Lightning protection level	Total lightning current of the LPS	Min. value of Imp current of the SPD (T1)	Usage practices
I	200 kA	$25 \mathrm{kA} / \mathrm{pole}$ (IT: $35 \mathrm{kA} \mathrm{min)}$.	Power installations
II	150 kA	$18.5 \mathrm{kA} /$ pole	Rarely used
III/IV	100 kA	$12.5 \mathrm{kA} /$ pole	Small installations

1: LPL (Lightning Protection Level)

Surge protective device (SPD) (internal protection)

The SPD

- Protects sensitive devices against overvoltages caused by lightning and industrial overvoltages, by limiting the overvoltages to values that are tolerated by the equipment
- Limits the possible harmful consequences in terms of the safety of people (medical equipment installed in the home, security systems, environmental systems, etc.)
- Maximises the continuity of operation of equipment and limits production losses

SPDs and standards

Standards EN/IEC 61643-11

Type of SPD		Test waves
EN 61643-11	IEC 61643-11	
Type 1 (T1)	Class I (T1)	limp: $10 / 350 \mu \mathrm{~s}$ (discharge current) In: $8 / 20 \mu \mathrm{~s}$ (nominal current, 15 shocks)
Type 2 (T2)	Class II (T2)	Imax: $8 / 20 \mu \mathrm{~s}$ (discharge current) In: $8 / 20 \mu \mathrm{~s}$ (nominal current, 15 shocks)

T1+T2 SPDs: tested in accordance with both methods.
T1 or T1+T2 SPDs are being increasingly used at the supply origin of installations, even when there is no lightning conductor, as they enable higher energies to be discharged and increase the service life the SPD.

HD/IEC 60364 electrical installation standards

According to articles 443 and 534 of HD/IEC 60364 standards and the TS/IEC 61643-12 guides, the use of SPDs in new or renovated buildings is compulsory at the supply origin of the installation in the following cases:

- Buildings with lightning conductors (T1 SPDs, limp $\geq 12.5 \mathrm{kA}$)
- Buildings with totally or partially overhead power supplies in AQ2 geographical areas (article 443.3.2.1-AQ2: Nk > 25, see map below) and based on a risk assessment taking into account the type of power supply to the building (article 443.3.2.2)

According to article 443.3.2.2, SPDs (Type 2) are also required in the following cases:

- Commercial/industrial buildings, public buildings and services,
religious buildings, schools and large residential complexes, etc.
- Hospitals and buildings containing medical equipment and/or security
systems for people and property (fire alarm, technical alarms, etc.)
Important: it is advisable to install an SPD when the safety of people may depend on the continuity of service of equipment (even if this is not required by national standards). Although not compulsory according to the installation standards, an SPD should always be installed to protect the communication equipment when there is an SPD on the low voltage power network.
These rules should change in 2015. Please consult Legrand.

Protection of distribution boards and sensitive equipment (cascaded protection)

Effective protection against overvoltages cannot generally be assured with a single SPD if its protection level (Up) is greater than 1.2 kV (EN/IEC 62305 and TS/IEC 61643-12).
When there are overvoltages, an SPD protects equipment by limiting these overvoltages to values that can be tolerated by the equipment. Thus, depending on its discharge capacity (discharge current In, Imax, etc.) and its protection level (Up), an SPD will limit these overvoltages to varying values depending on the energy levels involved. The overvoltage values that may be transmitted downstream of the SPD may double over distances of more than 10 m due to resonances associated with the type of electrical installation and the type of equipment. Overvoltages greater than 2.5 kV may then occur and damage equipment if the residual energy is high enough (2.5 kV being the insulation level of most electrical and electronic equipment, or typically 1.5 kV for electrical domestic appliances).
SPDs should be installed in the distribution boards supplying equipment that is sensitive or critical for the activity being carried out (and/or near to equipment with proximity SPDs).

Surge Protective Devices (SPDs)

technical characteristics

Modular SPDs

230/400 V~ power network ($50 / 60 \mathrm{~Hz}$) - Degree of protection IP 20
Operating temperature: -10 to $+40^{\circ} \mathrm{C} /$ Storage temperature: -20 to $+70^{\circ} \mathrm{C}$
$1 P+N(3 P+N)$ SPDs: L-N and N-PE protection, also called $1+1$ ($3+1$ resp.) or CT2 type protection depending on installation standards.

Cat.Nos	Type	Poles	Earthing system	Max. voltage (Uc)	Protection mode	Nominal current n/pole (8/20)	Max. discharge current			Protection level		Max. short-circuit current Isc (Isccr)	Protective device to be used ${ }^{1}$	FS auxiliary (remote status monitoring)
							$\begin{aligned} & \text { Imax/ } \\ & \text { pole } \\ & (8 / 20) \end{aligned}$	$\underset{(10 / 350)}{\text { limp/pole }}$	$\begin{array}{\|c} \text { I total } \\ (10 / 350) \end{array}$	$\mathrm{Up}_{\text {(L-N/L-PE/N-PE) }}$	$\begin{aligned} & \text { Up at } \\ & 5 \mathrm{kA} \end{aligned}$			
$\begin{aligned} & 003000 \\ & 412280 \end{aligned}$	$\begin{aligned} & \mathrm{T} 1 / 50 \mathrm{kA} \\ & \mathrm{~T} 1 / 35 \mathrm{kA} \end{aligned}$	1P	TT, TNC, TNS, IT	$440 \mathrm{~V} \sim$	CT1	$\begin{aligned} & 50 \mathrm{kA} \\ & 35 \mathrm{kA} \end{aligned}$		$\begin{aligned} & 50 \mathrm{kA} \\ & 35 \mathrm{kA} \end{aligned}$	$\begin{aligned} & 50 \mathrm{kA} \\ & 35 \mathrm{kA} \\ & \hline \end{aligned}$	2.5 kV		50 kA	$\begin{gathered} \mathrm{DPX}^{3} 160 \\ 80 \mathrm{~A} \end{gathered}$	$\begin{gathered} \text { no } \\ \text { yes } \end{gathered}$
412281	T1/25 kA	$1 \mathrm{P}+\mathrm{N}$	TT, TNS	$350 \mathrm{~V} \sim$	CT2	25/50 kA		25/50 kA	50 kA	1.5/2.5/1.5 kV				yes
412282	T1/25 kA	3 P	TNC	$350 \mathrm{~V} \sim$	CT1	25 kA		25 kA	75 kA	1.5 kV				yes
412283	T1/25 kA	$3 \mathrm{P}+\mathrm{N}$	TT, TNS	$350 \mathrm{~V} \sim$	CT2	25/100 kA		25/100 kA	100 kA	$1.5 / 2.5 / 1.5 \mathrm{kV}$				yes
412270	T1+T2/12.5 kA	1P	TT, TNC, TNS	$320 \mathrm{~V} \sim$	CT1	25 kA	60 kA	12.5 kA	12.5 kA	1.5 kV at 12.5 kA 1.9 kV at 25 kA	1 kV	50 kA	DX ${ }^{3} 63$ A C curve	no
412271	T1+T2/12.5 kA	2P	TT, TNS	$320 \mathrm{~V} \sim$	CT1	25 kA	60 kA	12.5 kA	25 kA					no
412272	T1+T2/12.5 kA	3 P	TNC	$320 \mathrm{~V} \sim$	CT1	25 kA	60 kA	12.5 kA	37.5 kA					yes
412273	T1+T2/12.5 kA	4 P	TT, TNS	$320 \mathrm{~V} \sim$	CT1	25 kA	60 kA	12.5 kA	50 kA					no
412276	T1+T2/12.5 kA	1P+N	TT, TNS	$320 \mathrm{~V} \mathrm{\sim}$	CT2	$25 / 25 \mathrm{kA}$	60 kA	$12.5 / 25 \mathrm{kA}$	25 kA	$1.5 / 1.6 / 1.5 \mathrm{kV}$ at 12.5 kA $1.9 / 2.1 / 1.5 \mathrm{kV}$ at 25 kA	1 kV			yes
412277	T1+T2/12.5 kA	$3 P+N$	TT, TNS	$320 \mathrm{~V} \sim$	CT2	25/50 kA	60 kA	12.5/50 kA	50 kA					yes
412250	T1+T2/8 kA	1 P	TT, TNC, TNS	$320 \mathrm{~V} \sim$	CT1	20 kA	50 kA	8 kA	8 kA	1.2 kV at 8 kA 1.7 kV at 20 kA	1 kV	50 kA	DX ${ }^{3} 40 \mathrm{~A}$ C curve	no
412251	T1+T2/8 kA	2P	TT, TNS	$320 \mathrm{~V} \sim$	CT1	20 kA	50 kA	8 kA	16 kA					no
412252	T1+T2/8 kA	3P	TNC	$320 \mathrm{~V} \sim$	CT1	20 kA	50 kA	8 kA	25 kA					no
412253	T1+T2/8 kA	4 P	TT, TNS	$320 \mathrm{~V} \sim$	CT1	20 kA	50 kA	8 kA	32 kA					no
412256	T1+T2/8 kA	$1 \mathrm{P}+\mathrm{N}$	TT, TNS	$320 \mathrm{~V} \sim$	CT2	20 kA	50 kA	8 kA	16 kA	$1.2 / 1.5 / 1.5 \mathrm{kV}$ at 8 kA $1.7 / 2 / 1.5 \mathrm{kV}$ at 20 kA	1 kV			no
412257	T1+T2/8 kA	$3 P+N$	TT, TNS	$320 \mathrm{~V} \sim$	CT2	20 kA	50 kA	8 kA	25 kA					no
412240	T2/40 kA	1 P	TT, TNC, TNS	$320 \mathrm{~V} \sim$	CT1	20 kA	40 kA			1.5 kV at 15 kA 1.7 kV at 20 kA	1 kV	50 kA	DX 25 A C curve	no
412241	T2/40 kA	2P	TT, TNS	$320 \mathrm{~V} \sim$	CT1	20 kA	40 kA					50 kA		no
412242	T2/40 kA	3 P	TNC	$320 \mathrm{~V} \sim$	CT1	20 kA	40 kA					50 kA		yes
412243	T2/40 kA	4 P	TT, TNS	$320 \mathrm{~V} \sim$	CT1	20 kA	40 kA					50 kA		no
$\begin{aligned} & 412246 \\ & 412266 \\ & \hline \end{aligned}$	T2/40 kA	1P+N	TT, TNS	$320 \mathrm{~V} \sim$	CT2	20 kA	40 kA			$1.5 / 1.6 / 1.4 \mathrm{kV}$ at 15 kA $1.7 / 2 / 1.4 \mathrm{kV}$ at 20 kA	1 kV	$\begin{aligned} & 50 \mathrm{kA} \\ & 25 \mathrm{kA} \end{aligned}$		$\begin{gathered} \text { no } \\ \text { yes } \\ \hline \end{gathered}$
$\begin{aligned} & 412247 \\ & 412267 \end{aligned}$	T2/40 kA	3P+N	TT, TNS	$320 \mathrm{~V} \sim$	CT2	20 kA	40 kA					$\begin{aligned} & 50 \mathrm{kA} \\ & 25 \mathrm{kA} \\ & \hline \end{aligned}$		$\begin{gathered} \text { no } \\ \text { yes } \end{gathered}$
412230	T2/40 kA	1P	TT, TNC, TNS, IT	$440 \mathrm{~V} \sim$	CT1	20 kA	40 kA			$\begin{aligned} & 1.8 \mathrm{kV} \text { at } 15 \mathrm{kA} \\ & 2.1 \mathrm{kV} \text { at } 20 \mathrm{kA} \end{aligned}$	1.3 kV	50 kA	DX 25 A C curve	no
412232	T2/40 kA	3 P	TNC, IT	$440 \mathrm{~V} \sim$	CT1	20 kA	40 kA							yes
412233	T2/40 kA	4P	TT, TNS, IT	$440 \mathrm{~V} \sim$	CT1	20 kA	40 kA							yes
412220	T2/20 kA	1P	TT, TNS	$320 \mathrm{~V} \sim$	CT1	10 kA	20 kA			$\begin{aligned} & 1.2 \mathrm{kV} \text { at } 5 \mathrm{kA} \\ & 1.4 \mathrm{kV} \text { at } 10 \mathrm{kA} \end{aligned}$	1.2 kV	25 kA	DX 20 A C curve	no
412221	T2/20 kA	2P	TT, TNS	$320 \mathrm{~V} \sim$	CT1	10 kA	20 kA							no
412223	T2/20 kA	4 P	TT, TNS	$320 \mathrm{~V} \sim$	CT1	10 kA	20 kA							no
$\begin{aligned} & 412226 \\ & 412262 \\ & \hline \end{aligned}$	T2/20 kA	1P+N	TT, TNS	320 V	CT2	10/20 kA	20 kA			$1.2 / 1.4 / 1.4 \mathrm{kV}$ at 5 kA $1.4 / 1.4 / 1.4 \mathrm{kV}$ at 10 kA	1.2 kV			$\begin{gathered} \text { no } \\ \text { yes } \\ \hline \end{gathered}$
$\begin{aligned} & 412227 \\ & 412263 \end{aligned}$	T2/20 kA	3P+N	TT, TNS	$320 \mathrm{~V} \sim$	CT2	10/20 kA	20 kA							$\begin{gathered} \text { no } \\ \text { yes } \end{gathered}$
$\begin{aligned} & 003951 \\ & 003971 \end{aligned}$	T2+T3/12 kA	1P+N	TT, TNS	275 V	CT2	10/10 kA	12 kA			1.1/1.2/1.2 kV at 10 kA	1 kV	$\begin{aligned} & 6 \mathrm{kA} \\ & 10 \mathrm{kA} \\ & \hline \end{aligned}$	integrated protection	no
$\begin{aligned} & 003953 \\ & 003973 \end{aligned}$	T2+T3/12 kA	$3 \mathrm{P}+\mathrm{N}$	TT, TNS	275 V	CT2	10/20 kA	20 kA					$\begin{aligned} & 6 \mathrm{kA} \\ & 10 \mathrm{kA} \end{aligned}$		

CT1: L(N)-PE protection modes.
CT2: L-N and N-PE protection modes.
1: DPX ${ }^{3}$ (with T1 SPDs), DX ${ }^{3}$ or similar type circuit breakers (with T2 and T1+T2 SPDs). For fuse protection or values other than those indicated in the table: please consult Legrand

Characteristics of proximity SPDs

$230 \mathrm{~V} \sim$ protection: Type 3 (T3) SPDs

Cat.Nos	$\mathbf{0 7 7 5} \mathbf{4 0}$	$\mathbf{6 9 4 6} \mathbf{6 4 / 6 6 / 7 0}$	$\mathbf{6 9 4 6} \mathbf{1 4 / 4 8 / 5 1 / 5 6 / 7 1}$
Protection mode	LN/NPE	LN/LPE/NPE	LN
Up	$1 / 1.2 \mathrm{kV}$	1 kV	1 kV
Imax	6 kA	-	-
In	1.5 kA	2 kA	2 kA
Uoc	3 kV	4 kV	4 kV

TT earthing system: Installation downstream of a residual current device (HPI type recommended).

RJ 45/RJ 11 protection

Cat. No.	$\mathbf{6 9 4 6} \mathbf{6 4}$	$\mathbf{6 9 4 6} \mathbf{7 0}$
Uc	200 V	
Up	600 V	
Imax	1.5 kA	
In	1 kA	
Uoc	3 kV	

TV protection (9.5 mm coax.)

Cat. No.	$\mathbf{6 9 4 6} \mathbf{6 6}$
Uc	50 V
Up	900 V
Imax	5 kA
In	1 kA
Uoc	3 kV

L7legrand

Surge Protective Devices (SPDs)

technical characteristics

Installation

Associated overcurrent protection

SPDs must be protected by a circuit breaker (or fuses), to provide protection in the event of an overload, which may make the SPD reach its end of life (see selection table p. 10-11). This protective device will be defined to be coordinated or discriminating with regard to upstream protective devices.

Connection principles

 Main terminal block for protective
 conductors or earthing bar (PE)

Connection lengths: as short as possible (< 50 cm if possible).
EMC (Electromagnetic Compatibility) rules: avoid loops, fix the cables firmly against the exposed metal conductive parts of the enlcosure.

SPD types and earthing systems

When possible (according to local rules), the SPD and its associated overcurrent protection (P2) should be installed upstream of the main protection (P1) as shown below (according to standards HD/IEC 60364).

SPDs and TT earthing system

P1: main protection of the installation
SPD: surge protective device with Uc 275 or 320 V recommended
(1) (upstream of P1): $1 \mathrm{P}+\mathrm{N} / 3 \mathrm{P}+\mathrm{N}$ SPDs only (except for Cat.Nos 0039 51/53/71/73).
1P/2P/3P/4P SPDs and Cat.Nos 0039 51/53/71/73 must always be installed downstream of a residual current device (discriminating or delayed, at the supply end of the installation).
(2) (downstream of P2): any SPD.

SPDs and TN (TNC, TNS and TNC-S) earthing systems

P1: main protection of the installation
SPD: surge protective device with Uc 275 or 320 V recommended

SPDs and IT earthing system

P1: main protection of the installation
SPD: surge protective device with Uc 440 V (Uc < 440 V prohibited)

Coordinating upstream/downstream SPDs
Consists of ensuring that any downstream SPD (in distribution enclosures or proximity SPDs) is correctly coordinated in energy terms with any SPD located upstream (TS 61643-12).

Minimum distances between SPDs

Upstream SPD	Downstream SPD	Min. distance (m)
T1/50 and T1/25	T2/40	10
T1/12.5 and T1/8	T2/40	6
	T2/20, T2/12	8
T2/40	T2/20	4
	T2/12	6
T2/20 and T2/12	Proximity SPD	2

If it is not possible to comply with these distances, insert decoupling inductors on each phase and neutral conductor.

DXㅗ

modular din-rail products

Products	A	B						C	D	E	F	G
		SP	SPN	DP	TP	TPN	FP					
DX ${ }^{3}$ MCBs (0.5 to 63 A)	70	17.7	35.6	35.6	53.4	71.2	71.2	60	83	44	76	94
DX ${ }^{3}$ MCBs ($80-125$ A)	70	26.7	-	53.4	80.1	-	106.8	60	83	44	76	89
DX ${ }^{3}$ Isolators	70	-	-	35.6	53.4	-	71.2	60	83	44	76	94
DX ${ }^{3}$ RCCB - type AC (DP)	70	-	-	35.6	-	-	-	60	83	44	76	94
DX ${ }^{3}$ RCCB - type AC (FP)	71.5	-	-	-	-	-	71.2	60	83	44	77.5	94
DX ${ }^{3}$ RCCB - type A - S (DP)	70	-	-	35.6	-	-	-	60	83	44	76	94
DX ${ }^{3}$ RCCB - type A - S (FP)	71.5	-	-	-	-	-	71.2	60	83	44	77.5	94
DX ${ }^{3}$ RCCB - type Hpi (DP)	70	-	-	35.6	-	-	-	60	83	44	76	94
DX ${ }^{3}$ RCCB - type Hpi (FP)	71.5	-	-	-	-	-	71.2	60	83	44	77.5	94
DX ${ }^{3}$ RCBO - type AC	70	-	-	71.2	-	-	142.4	60	83	44	76	94
DX ${ }^{3}$ RCBO - type AC (DP 2 mod.)	70	-	-	35.6	-	-	-	60	83	44	76	94
DX ${ }^{3}$ RCBO - type Hpi (DP 2 mod.)	70	-	-	35.6	-	-	-	60	83	44	76	94
Auxiliary contacts	70	8.7						60	83	44	76	83
Auxiliary contacts	70	17.7						60	83	44	76	83
Shunt trip	70	17.7						60	83	44	76	83
Minimum voltage trip	70	17.7						60	83	44	76	83
POP over voltage	74	54						74	83	44	80.5	89
Remote control for MCB / RCBO	74	54						74	83	44	80.5	89
CX ${ }^{3}$ contactors 20 A	62	17.8						60	83	44	67.5	-
CX^{3} contactors 40 A (2 mod.)	60	35.6						61	80	44	67	-
CX ${ }^{3}$ contactors 40 A / 63 A (3 mod.)	60	54						61	80	44	67	-
CX^{3} change over switches	74	17.7						68	83	44	74	94
CX ${ }^{3}$ pushbutton \& control switches	66.65	17.8						43.85	84.5	43.85	61	94.9
$\mathrm{CX}^{3} \mathrm{LED}$ indicators	62	17.8						43.85	84.5	43.85	61	94.9

41 legrand

NOTES

Head office

1. $61 \& 62$, 6 th Floor,

Kalpataru Square, Kondivita Road, Off Andheri-Kurla Road, Andheri (E),
MUMBAI - 400059.
Tel : (022) 30416200
Fax : (022) 30416201
Website : www.legrand.co.in

Regional sales offices

2. A-25, Mohan Co-operative Industrial Estate, Mathura Road,
NEW DELHI - 110044
Tel : (011) 26990028 / 29 / 30, 39902200 Fax : (011) 26990047
3. Bhakta Towers, 2nd \& 3rd Floor, Plot No. KB 22, Salt Lake, Sector - 3, KOLKATA - 700098. Tel : (033) 40213535 / 36 Fax : (033) 40213537
4. 34, 3rd Floor, Kalpataru Square, Kondivita Road, Off Andheri-Kurla Road, Andheri (East),
MUMBAI - 400059.
Tel : (O22) 33856200
Fax : (022) 33856201
5. Gee Gee Universal,

8th Floor, Door No. 2, 18/1 \& 18/2, McNichols Road, Chetput, CHENNAI - 600031.
Tel : (044) 3024 7200, 28364165 / 67 / 68 Fax: (044) 28364169
6. 205-208, 2nd Floor, Block - II, White House, Kundan Bagh, Begumpet, HYDERABAD - 500016.
Tel : (040) 23414398 / 67, 45671717
Fax : (040) 66366974

Branch offices

7. SCO 1-2-3,

Second Floor, Sector 17B,
CHANDIGARH - 160017.
Tel : (0172) 3058631 / 32 / 33 / 34 / 35
Fax : (0172) 5019008
8. 507-510, Vth Floor, Soni Paris Point, Jai Singh Highway, Banipark,
JAIPUR - 302016.
Telefax : (0141) 5113129
9. 504, Sakar IV,

Opp. M. J. Library, Ellis Bridge,
AHMEDABAD - 380 006. Gujarat
Tel : (079) 26586561 / 2
Fax : (079) 26586563
10. 402, Swastik Chambers, Near Ashwamegh Marriage Hall, Behind HP Petrol Pump, Off Karve Road, Erandwane,
PUNE - 411004
Tel : (020) 67295600 / 601
Fax : (020) 67295604
11. IInd Floor, Al-Latheef Building, 2/1, Union Street, Off. Infantry Road,
BANGALORE - 560001.
Tel : (080) 2286 1081, 41133293 / 4
Fax : (080) 22861078
12. No. 36/2178, Syda Building, 2nd Floor, Kaloor - Kadavanthra Road, Kaloor,
KOCHI - 682017.
Tel : (0484) 234 2921, 6580921
Fax : (0484) 2333921
13. B-15, Thirumalai Towers, IV-D, Fourth Floor, 723, Avanashi Road, COIMBATORE - 641018.
Tel : (0422) 650 2728, 2223634 / 0283
Fax : (0422) 2223164
14. Plot No.95, II Floor, Shreyash Heights, Ramdas Peth, VIP Road,
NAGPUR - 440010.
Tel : (0712) 6627857 / 58
Fax : (0712) 6627859
15. 204-205, Megapolis Square, 579, M G Road, INDORE - 452001.
Tel : (0731) 3931650 / 51 / 52
Fax : (0731) 3931653
16. MF-2, Datta's Lords House Jammi Chettu Street, VIJAYAWADA - 520010.
Tel : (0866) 661 1393, 6646393
Fax : (0866) 6699393

Area offices

17. ABC Business Club 16, Tagore Villa,
Chakrata Road,
DEHRADUN - 248001.
Uttaranchal.
Tel : (0135) 2715189 / 248001
18. Cabin No.104/105,

Trade Point,
Ground Floor,
Saran Chamber 1,
5, Park Road, Hazratganj,
LUCKNOW - 226001.
Tel : (0522) 2239044 / 7285
Fax : (0522) 2239124
19. Cabin No. 9 ,

Second Floor,
Madhok Trade Centre
Madhok Complex,
Ferozpur Road,
LUDHIANA - 141001.
Tel/Fax No.: (0161) 2770301 / 304
20. House No. 97 ,

Ground Floor,
Rajgarh Main Road,
Opp. City Heart Nursing Home,
GUWAHATI-781 007.
Tel : (0361) 2458498
21. 94, Udham Singh Sarani, Ground Floor, Ashrampara, SILIGURI-734 001.
Tel : 9434191635 / 9800977780
22. Aparna Towers, 1st Floor, 2/3, Bypass Road,
MADURAI - 625010.
Telefax : (0452) 2308414
23. 404, Eshwar Plaza, Dwaraka Nagar, Main Road,
VISHAKHAPATNAM - 530020.
Tel : (0891) 6635652
Fax : (0891) 6639363
24. Plot No. 359,

Saheed Nagar, 2nd Floor,
BHUBANESWAR - 751007.
Tel : (0674) 2540623

Technical assistance from Legrand

Telephonic technical assistance for selection of products, technical information, guidance, wiring diagrams and estimation is now made available to you at each Regional Office. Contact the Technical Officer of Legrand at the following telephone numbers
New Delhi : Tel.: (011) 26990028 / 29 / 30, 39902200
Kolkata : Tel.: (033) 40213535 / 36
Mumbai : Tel.: (022) 33856200
Chennai : Tel.: (044) 3024 7200, 28364165 / 67 / 68
Hyderabad: Tel.: (040) 23414398 / 67, 45671717
For other places, contact the nearest
Regional / Branch / Area offices

[^0]: \qquad

[^1]: All these values are also valid for circuit breakers associated to RCD add-on modules.
 According to the curves and ratings of circuit breakers, attention to the magnetic threshold and to the size of upstream circuit breakers which must necessarily be higher

[^2]: = Total discrimination

[^3]: - Accessories are mounted on the left hand side of the product.

[^4]: 1: For direct connection meters
 If connected via transformers, the resolution and maximum indication depend on the transformation ratios of these transformers

